UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

[1]

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	33

1 (i) Rb / Sr [1] (ii) I [1] (iii) Fe [1] (iv) P [1] [1] (**v**) Si (a) (i) no reaction 2 [1] Fe + $\mathrm{Sn^{2^+}} \rightarrow \mathrm{Fe^{2^+}}$ + $\mathrm{Sn}\,/\,\mathrm{2Fe}$ + $\mathrm{3Sn^{2^+}} \rightarrow \mathrm{2Fe^{3^+}}$ + $\mathrm{3Sn}$ [2] for realising that there would be a reaction shown by an attempt to write an equation e.g. writing Fe₂Sn etc. allow [1] no reaction [1] (ii) tin oxide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen tetroxide), oxygen All three for two [2] accept correct formulae [1] any two correct products (b) (i) tin [1] (ii) $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ [2] not balanced allow [1] (iii) sulfuric acid [1] (c) zinc is more reactive than iron/steel [1] tin is less reactive than iron/steel [1] zinc corrodes/reacts/loses electrons/is oxidised/is anodic/provides sacrificial protection/ forms positive ions (in preference to iron or steel) ORA allow iron is cathodic for this mark. [1] Iron/steel corrodes/reacts/rusts/loses electrons/is oxidised/is anodic/forms positive ions (in preference to tin). ORA

allow tin is cathodic for this mark

[1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	33

3 (a) (i) concentration of thiosulfate is proportional to volume of thiosulfate solution added (when total volume is same in all experiments) / concentration of acid always the same [2]

for comments based on amount / to make experiments fair / comparable allow [1]

(ii) 240 s [1]

(iii) decreases/reaction slower [1] because concentration of thiosulfate decreases [1] frequency/chances/rate of collisions decreases [1]

one mark can be scored for less/smaller amount/smaller volume of thiosulfate / less collisions

(b) rate increases with temperature (or at 42 °C) ORA [1]

particles/molecules/ions move faster or gain energy / ORA [1] (don't accept reactants or atoms)

more collisions / ORA [1]

(last mark is for qualification of the collisions) i.e. greater frequency / more per unit time/more often /greater chance/more likely/more collision rate/more effective/more successful/more with activation energy / ORA [1]

4 One redox equation [1] accept $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$

Fe₂O₃ + 3C
$$\rightarrow$$
 4Fe + 3CO
C + O₂ \rightarrow CO₂
CO₂ + C \rightarrow 2CO

one acid/base equation CaO + SiO₂
$$\rightarrow$$
 CaSiO₃ or CaCO₃ + SiO₂ \rightarrow CaSiO₃ + CO₂

three more equations or comments [3]

carbon <u>burns</u> to form carbon dioxide
this reaction is <u>exothermic</u> or <u>produces heat</u>
carbon dioxide is <u>reduced</u> to carbon monoxide
carbon monoxide <u>reduces</u> hematite to iron
carbon <u>reduces</u> hematite to iron
limestone removes silica <u>which is an impurity</u>

to form slag which is a waste product

limestone decomposes or symbol/word equation

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	33

5 (a)
$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2/Zn + 2H^+ \rightarrow Zn^{2+} + H_2$$
 [2]

marks are for correct reactants [1] correct products [1] If ionic equation is given don't penalise SO_4^{2-} spectator ions on both sides

(b) (exothermic because) a cell produces (electrical) energy/electricity [1]

the next two marks score for

electrons are lost **AND** gained / oxidation no. or state/valency **both** increases and decreases / two correct half equations i.e. $Zn \rightarrow Zn^{2+} + 2e^-$ and $2H^+ + 2e^- \rightarrow H_2$ [2]

- (c) zinc [1] cond it is the more reactive metal / it supplies electrons / it forms ions more readily than iron [1]
- (d) replace zinc with magnesium replace iron with copper use (more) concentrated sulfuric acid accept use a more concentrated acid / a more concentrated solution

any **two** [2]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	33

6

(a) (i)	rate at which methanol formed by forward reaction equals rate it is reacting in back reaction rate of forward reaction equals rate of back reaction allow [1]	[1] [1]
(ii)	low/lower/decreased temperature high/higher/increased pressure Explanations not needed but if they are given they must be correct IGNORE values of temperature and pressure	[1] [1]
(iii)	high pressure can be used / lower pressure due to expense or safety cannot use a low temperature as rate would be too slow the rate would not be economic	[1] iic [1]
(b) (i)	ester	[1]
(ii)	soap/sodium stearate or any acceptable salt/glycerol	[1]
(iii)	burning both fuels forms carbon	[1]
	growing plants to make biodiesel removes carbon dioxide from atmosphere	[1]
(c) (i)	correct SF of an octane	[1]
(ii)	add bromine (water)/bromine in an organic solvent result octane remains brown/orange/yellow/red result octane goes colourless/decolourises not clear/discolours colour of reagent must be shown somewhere for [3] otherwise max [2] accept equivalent test using KMnO ₄ in acid or alkali	[1] [1] [1]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	33

7

(a)	a) 3 bp and 1nbp around phosphorus [7 1 bp and 3nbp around each chlorine [7				
(b)	(i)	$PCl_3 + 3H_2O \rightarrow 3HCl + H_3PO_3$	[1]		
	(ii)	acid solutions same concentration measure pH/pH paper/Universal indicator hydrochloric acid lower pH	[1] [1] [1]		
		colours of Universal indicator can be given as red <orange<yellow as="" h<sub="" hcl="" ignore="" is="" long="" lower="" ph="" precise="" than="" values="">3PO₃</orange<yellow>			
		OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in reactivity series but not ab magnesium	[1] ove		
		calcium carbonate or any insoluble carbonate hydrochloric acid react faster/shorter time	[1] [1]		
		OR acid solutions same concentration measure electrical conductivity hydrochloric acid better conductor/bulb brighter	[1] [1] [1]		
		OR acid solutions same concentration add sodium thiosulphate hydrochloric acid forms precipitate faster/less time	[1] [1] [1]		
	(iii)	sodium hydroxide/sodium carbonate titration cond on correct reagent second mark scores for mention of titration /burette/pipette/indicator. experimental detail not required	[1] [1]		
		any named soluble calcium salt e.g. calcium chloride/nitrate/hydroxide	[1]		
		precipitation/filter/decant/centrifuge	[1]		

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	33

(a) (i) (to avoid) carbon monoxide formation/so complete combustion occurs/avoid incomplete 8 combustion So that CO₂ is produced [1] CO does not dissolve/react with alkali [1] (ii) CO₂ is acidic [1] (iii) volume of gaseous hydrocarbon 20 cm³ volume of oxygen used = 90 cm³ [1] volume of carbon dioxide formed = 60 cm³ [1] no mark for 20 cm³ of hydrocarbon. (iv) $2C_3H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$ [1] OR ... $C_3H_6(g) + 9/2O_2(g) \rightarrow 3CO_2(g) + 3H_2O(I)$ C_3H_6 [1] C₃H₆ can be given in the equation for the second mark (b) (i) correct structural or displayed formula of another chlorobutane / dichlorobutane / polychlorobutane [1] (ii) light / 200 °C / lead tetraethyl [1] (iii) cracking is the decomposition/breaking down of an alkane/hydrocarbon/petroleum [1] heat/high temperature / Temperature between 450 °C to 800 °C OR catalyst / named catalyst [1] to give a simpler alkane and alkene [1] word equation or equation as example [1] to make polymers / to increase petrol fraction / organic chemicals/petrochemicals / hydrogen [1] any four