MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/04
Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Page 2 | Mark Scheme: Teachers' version IGCSE - October/November 2010 | | \|c|ccc |
| :---: | :---: | :---: | :---: |
| 1 (a)
 (b) (i)
 (ii) | 5h 21 min seen 5.35 h seen
 $340 \div 5.35$ seen
 $63.551 \ldots$ or $63 \frac{59}{107}$
 54.0 (54.01-54.02)
 1918 ft | $\left\lvert\, \begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { B1 } & {[4]} \\ \text { B2 } & {[2]} \\ \text { B3 ft } & {[3]} \end{array}\right.$ | Subtracting times $(321$
 Converting minutes part to hours (may d
 later $)$ $(340 \div 321$ Mr
 $340 \div$ their time $(\times 60$ M1)
 If B0, M1 for 0.85×63.55 oe
 $\mathrm{ft} 340 \div$ their (i) changed to hours and minutes added to 1300
 If B0, M1 for $340 \div$ their (i) (6.29...)
 or $5.35 \div 0.85$
 or $321 \div 0.85 \div 60$
 M1 (dep) for changing decimal part to minutes |
| $2 \text { (a) (i) }$
 (ii)
 (b)
 (c)
 (d) | $\begin{aligned} & 93312 \\ & 9.3312 \times 10^{4} \mathrm{ft} \\ & 9.69(0) \text { to } 9.691 \times 10^{-3} \\ & \\ & 4.57 \text { or } 4.573 \ldots \\ & 4.72 \text { or } 4.722 \text { to } 4.723 \end{aligned}$ | B1 $[1]$
 B1 ft $[1]$
 B2 $[2]$

 B1 $[1]$
 $B 2$ $[2]$ | Accept 93300 or 93310
 ft their (i) B1 for $9.331,9.33$ or $9.3 \mathrm{all} \times 10^{4}$
 B1 for $0.00969(0)$ to 0.009691 implied by 9.69^{-03}
 SC 1 for 9.7×10^{-3} or 9.69×10^{3}
 If $\mathrm{B} 0, \mathrm{M} 1$ for $\log 2000 \div \log 5$ or graph clearly sketched showing intersection |
| 3 (a)
 (b) | Sketch of U-shaped parabola intersecting x-axis twice or full correct use of formula with $a=1$, $b=2$ and $c=-4\left(\frac{-2 \pm \sqrt{20}}{2}\right)$ or correct use of completing the square $-3.24,1.24$ $-3.24 \leq x \leq 1.24 \mathrm{ft}$ | $\begin{array}{\|ll\|} \hline \text { M1 } & \\ & \\ & \\ \text { A1 A1 } & \\ & \\ \hline & \\ \text { B1 } \mathbf{f t} & \\ \text { B1 ft } & \\ \hline \end{array}$ | If M1 A0, SC1 for -3.2 or $-3.236 \ldots$ and 1.2 or $1.236 \ldots$
 If M0, SC2 for - 3.24 and 1.24
 or SC1 for -3.2 or $-3.236 \ldots$ and 1.2 or 1.236...
 ft only if two solutions to part (a) Condone $<$ used and allow in words, if clear |
| 4 (a)
 (b) | Line joining 5 on each axis approx Horizontal line roughly through 1 Line through origin at more than 45° to x-axis
 R in correct region oe | | All may be freehand
 dep on B3 |

Page 3	Mark Scheme: Teachers' version IGCSE - October/November 2010		Syllabus
5 (a) (b) (c) (i) (ii)	5 2 3 2.875 (allow $2.87,2.88$ or 2.9) 4 2 $\frac{1}{8} \quad$ cao 45 ft	B1 B1 B1 B1 B1 $[5]$ B2 $[2]$ $B 2$ $[2]$ B1ft $[1]$	If B0, M1 for attempting to find a fraction with denominator 72 If $\mathrm{B} 0, \mathrm{~B} 1$ for $\frac{9}{72}$ o.e. ft their (i) if answer is integer accept $\frac{45}{360}$ [10]
6 (a) (b) (i) (ii) (iii)	1.15 $\begin{aligned} & \frac{15}{y}+\frac{9}{y+2}=8 \\ & 15(y+2)+9 y=8 y(y+2) \text { or } \\ & 15 y+30+9 y=8 y^{2}+16 y \\ & 8 y^{2}-8 y-30=0 \\ & \therefore 4 y^{2}-4 y-15=0 \\ & (2 y-5)(2 y+3) \end{aligned}$ $2.5(0) \mathrm{ft}$	B3 $[3]$ M2 M1 E1 $[4]$ B2 $[2]$ B1ft $[1]$	If B0, M1 for $20 t+8(3 t-1)$ and M1 (dep) for this equal to 42.6 Allow M1 for 1.h.s. Could still be all over $y(y+2)$ and not expanded or partly or fully expanded Correctly established. Need to see 1 correct line and final answer Allow SC1 for any other $(2 y \pm 5)(2 y \pm 3)$ ft a positive root from (ii) if the only one from two possible roots.
7 (a) (b) (c) (i)	Real numbers oe $3,90$ Stretch Factor $2 x$-axis invariant Translation $\binom{-60}{0}$	B1 $[1]$ B1 B1 B1 B1 B1 B1 B1 B1 $[2]$	Allow either way round Independent Must be translation Independent - Allow description in words
(ii) (b) (c)	Triangle at $(-4,4),(-1,4),(-1,5)$ Triangle at $(-1,-2),(-1,-5),(-2,-5)$ Enlargement , (factor) 2, (centre) $(4,0)$ Translation $\binom{6}{-3}$	$\left.\begin{array}{ll}\text { B2 } & {[2]} \\ \text { B2 } & {[2]} \\ \text { B1 } & \text { B1 } \\ & \text { B1 } \\ & {[3]} \\ \text { B1 } & \text { B1 }\end{array}\right]$	If $\mathrm{B} 0, \mathrm{SC} 1$ for any translation If $\mathrm{B} 0, \mathrm{SC} 1$ if two vertices correct Each B is independent B's independent Must be translation but allow description in words

Page 4	Mark Scheme: Teachers' version IGCSE - October/November 2010		Syllabus 0607
9 (a) (b) (c) (d) (e)	$2,3,5,7,11,13,17,19$ All 8 points correctly placed $3,11,17,19 \mathrm{ft}$ 3 ft B only shaded (i.e. parts in A and C not shaded)	$\|$B1 $[1]$ B3 $[3]$ B1 $\mathbf{f t}$ B1 $[1]$ B1 $[1]$ $[1]$	B 2 for 7 correct and B 1 for 6 correct ish extras ft their Venn diagram ft their Venn diagram
10 (a) (i) (ii) (b) (i) (ii) (iii) (iv)	One pair of angles equal with reason Second pair of angles equal with reason Angles of triangles equal 18 50 98 5.14 (2...) 4	$\begin{array}{\|lc\|} \hline \text { R1 } & \\ \text { R1 } & \\ \text { R1 } & {[3]} \\ \text { B2 } & {[2]} \\ \text { B1 } & {[1]} \\ \text { B2 } & {[2]} \\ & \\ \text { B2 } & {[2]} \\ \text { B1 } & {[1]} \end{array}$	Reasons can only be angles in same segment oe and vertically opposite oe, the second only used once Accept anything suggesting angles same Each R is independent If B0, M1 for 2^{2} or 0.5^{2} seen If B0, M1 for $180-(32+$ their (i)) or for angle $\mathrm{QPR}=32$ seen or for angle $\mathrm{PQY}=58$ seen (may be on diagram) If $\mathrm{B} 0, \mathrm{M} 1$ for $\cos 50=R Y \div 8$ oe
11 (a) (b) (c) (i) (ii)	3 points correct 2 mm accuracy Negative $y=-0.565 x+58.5$ 30 or 31 cao	$\left.\begin{array}{ll}\mathrm{P} 2 & {[2]} \\ \mathrm{B} 1 & {[1]} \\ \mathrm{B} 1 & \mathrm{~B} 1\end{array}\right]$	P1 for 2 correct Allow description e.g. cold goes down as hot goes up Must be in form $m x+c$, allow -0.57 or -0.5652 to -0.5651 for m and 58 or 58.48... for c Must be integer If $\mathrm{B} 0, \mathrm{M} 1$ for using their linear regression equation with $x=50$
$12 \text { (a) }$ (b) (i) (ii) (iii)	0.8333 Two accurate points marked C_{1} and C_{2} $56.4,123.6$ 67.2 ft	$\begin{array}{lll} \hline \text { B3 } & {[3]} \\ & & \\ & & \\ \text { B1 } & \text { B1 } & {[2]} \\ \text { B1 } & \text { B1 } & {[2]} \\ \text { B1 } & & {[1]} \end{array}$	SC 2 for $\frac{5}{6}, 0.83,0.833,0.8333 \ldots$ isw if angle given If B 0 and $\mathrm{SC} 0, \mathrm{M} 1$ for $\frac{\sin C}{10}=\frac{\sin 30}{6}$ oe (can be implicit) 2 mm accuracy ft the difference between their answers in (ii)

Page 5	Mark Scheme: Teachers' version IGCSE - October/November 2010		Syllabus 0607
13 (a) (b) (c) (i) (ii) (iii) (iv) (v)	982 (981.7-981.9) 295000 (294 500-294 600) ft $106.3(106.2-106.3)$ 299.9 to 300.4 ft 577.8 to 580 ft $277-280.1 \mathrm{ft}$ 83.1 to 84.03 ft	B2 [2] B2 ft [2] B3 [3] B2 ft [2] B2 ft [2] B1ft [1] B2 ft [2]	If B0, M1 for $0.5 \times \pi \times 25^{2}$ ft their $(\mathbf{a}) \times 300$ If B0, M1 for their (a) $\times 300$ Allow 106 If B0, M1 for $\cos =\frac{15}{25}$ oe then M1 dep for $\times 2$ ft their (i) If B0, M1 for $0.5 \times 25^{2} \times \sin ($ their(i)) or for $0.5 \times 2 \times 20 \times 15$ oe ft their (i) If B0, M1 for their (i) $\div 360 \times \pi \times 25^{2}$ ft their (iii) - their (ii) ft their (ii) $\times 0.3$ oe If B0, M1 for their (ii) $\times 0.3$ oe
14 (a) (b) (c) (d) (e)	One curve reasonable shape, roughly approaching $y=1$ both ends One max in negative x region One minimum just to right of y-axis or on it $\begin{aligned} & (-5.19,1.24) \quad(-5.193 \text { to }-5.192 \\ & 1.238 \text { to } 1.239) \end{aligned}$ 0.161 to 1.24 (0.1614 to 0.1615 and 1.238 to 1.239) $\begin{aligned} & y=1 \\ & -1.62(4 \ldots) \end{aligned}$	$\begin{array}{lc} \mathrm{B} 1 & \\ \mathrm{~B} 1 & \\ \mathrm{~B} 1 & {[3]} \\ & \\ \mathrm{B} 2 & {[2]} \\ \mathrm{B} 3 & {[3]} \\ & \\ & \\ \text { B1 } & {[1]} \\ \mathrm{B} 2 & {[2]} \end{array}$	Allow -5.2 and 1.2 Allow 0.16 and 1.24 If $\mathrm{B} 0, \mathrm{~B} 1$ for top value their y-coord of (b) and M1 (indep) for evidence of finding minimum point If B0, M1 for line with $c=1$ and positive gradient added to sketch (may be freehand)

