

ADVANCED General Certificate of Education 2011

Candidate Number

Centre Number

Biology

Assessment Unit A2 2

assessing

Biochemistry, Genetics and Evolutionary Trends

[AB221]

THURSDAY 26 MAY, AFTERNOON

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. There is an extra lined page at the end of the paper if required. Answer **all eight** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Section A carries 72 marks. Section B carries 18 marks.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

You are reminded of the need for good English and clear presentation in your answers.

Use accurate scientific terminology in all answers.

You should spend approximately 25 minutes on Section B.

You are expected to answer Section B in continuous prose.

Quality of written communication will be assessed in **Section B**, and awarded a maximum of 2 marks.

Statistics sheets are provided for use with this paper.

For Examiner's use only					
Question Number	Marks				
1					
2					
3					
4					
5					
6					
7					
8					

Total	
Marks	

BLANK PAGE

Section A

Examiner Only

Marks Remark

1 The diagram below represents transverse sections through three different animal phyla, **A**, **B** and **C**.

(a	Identif	y the	body	layers	1,	2 and	3.
----	---------	-------	------	--------	----	-------	----

1			

(b) Identify which of the transverse sections (**A**, **B** or **C**) represents a member of the phylum Platyhelminthes. Give **one** reason for your decision.

Section _____

Reason			

	[2]

(c) Which section (A, B or C) represents a phylum that shows radial symmetry?

_____ [1]

(d) Which section (A, B or C) represents a phylum in which chaetae would be present?

2 (a) Glycerate phosphate and triose phosphate are produced during the light-independent stage of photosynthesis.

Examiner Only				
Marks	Remark			

(i) The light-independent stage is sometimes referred to as the 'dark stage'. Explain why light-independent is a more appropriate term.

[4]

(ii) State the precise location of the light-independent stage.

(iii) The graph below shows the concentrations of glycerate phosphate and triose phosphate during periods of light and dark.

Explain the change in the concentration of triose phosphate, when light is no longer available, as shown in the graph above.

		ro.

___ [3]

(b) The diagram below shows the absorption spectrum for the photosynthetic pigments in a typical terrestrial plant.

Examin	er Only
Marks	Remark

,	1	1	Chlorophyll b	Chlorophy	∕ll a
Relative absorbtion of light			- Accessory pigments		
Relative ab					
4()0	500	600	700	
	Blue	Waveleng	th of light/nm	Red	

The action spectrum is distinct from the absorption spectrum. Explain what is meant by the term 'action spectrum'.

[1]					
[1]					- 4 -
					[1]

(c) White light is composed of different wavelengths. Light filters can be used to control the wavelengths of light reaching a plant.

Devise a plan for an experiment to compare the rates of photosynthesis of a water plant in red and blue light. Your plan should refer to the control of variables, the collection of data and the determination of photosynthetic rate.

		[4]

Examiner Only

Marks Remark

3 (a) The diagram below shows part of the process of aerobic respiration.

(i)	Name the respiratory process that produces pyruvate.	
		[1]

- (ii) Name molecule A.

 _____[1]
- (iii) State the precise location of the electron transport chain.

 [1]

				[4]	
		on into the respirat	ory quotient (RQ) of yeast	cells under	
diffe shov	rent cond wn in the	on into the respirate litions was undertal table below.	ory quotient (RQ) of yeast ken. The resulting RQ valu	cells under les are	
diffe shov den	rent cond wn in the tify the m	on into the respirate litions was undertal table below.	ory quotient (RQ) of yeast ken. The resulting RQ valu substrate(s)' and 'type(s) o	cells under les are	
diffe shov den	rent cond wn in the tify the m	on into the respirate litions was undertale table below. hissing 'respiratory s	ory quotient (RQ) of yeast ken. The resulting RQ valu substrate(s)' and 'type(s) o	cells under les are	
diffe shov den	rent cond wn in the tify the m iration' ar	on into the respirate litions was undertaktable below. sissing 'respiratory's and complete the tab	ory quotient (RQ) of yeast cen. The resulting RQ values substrate(s)' and 'type(s) of type(s) of	cells under les are	
diffe shov den	rent cond wn in the tify the m iration' ar RQ value	on into the respirate litions was undertaktable below. sissing 'respiratory's and complete the tab	ory quotient (RQ) of yeast cen. The resulting RQ values but rate(s)' and 'type(s) or le. Type(s) of respiration	cells under les are	

4 The diagram below shows a step in the synthesis of a polypeptide during translation.

	[1]
(b)	Using the information in the diagram describe precisely what happens in the next step of polypeptide synthesis.

	Examin	er Only	
	Marks	Remark	
[4]			
[1]			
ens			
[4]			

6964

(a) Name molecule X.

(c)	The genetic code is described as degenerate. Explain what is meant by the term 'degenerate' and identify where in the diagram a degenerate code is illustrated.	Examin Marks	er Only Remark
	[2]		
(d)	Different types of mutation can arise which cause a change in the genetic code. A base deletion can have much more significant consequences in terms of the final protein produced than a base substitution which may have little or no effect. Explain the reasons for this.		
	[3]		

9 [Turn over

BLANK PAGE

5	domina	nt to the allele for	<i>Drosophila</i> , the allele for vestigial wing, a . The at the allele for ebony boo	allele for normal body	Examiner Only Marks Remar
	(a) (i)	Flies with vestigicolour were cros	ial wings and heterozyg	ous for normal body	
		State the parent	al genotypes and possi	ole gametes produced.	
		Parental phenotypes	vestigial wings normal body	vestigial wings normal body	
		Parental genotypes _			
		Gametes _			_
		Complete a general of the offspring.	etic cross to show the g	enotypes and phenotyp	es
					[4]
	(ii)		age in the production of E Law of Independent A	gametes does Mendel's ssortment) apply?	6
					[1]

(b) The nu recorde	imbers of offsed.	spring produc	ced from and	other cross w	rere	Examiner Only Marks Remark
nonoebeb						
A total of 2000 flies were produced.						
			d to check if	these result	s statistically	
fit an e	xpected ratio	of 1:1:1:1.				
(i) Su	ggest a suita	ble null hypo	thesis for th	is test.		
					[1]	
(ii) Co	mplete the ta	able below or		the v^2 value	for these	
	implete the ta sults.	ible below ar	id calculate	tne x value	for these	
Category	Observed (O)	Expected (E)	(O – E)	(O – E) ²	$\frac{(O-E)^2}{E}$	
Normal body normal wing	471					
Normal body vestigial wing	519					
Ebony body normal wing	479					
Ebony body vestigial wing	531					
<u> </u>	1			I		
		0	calculated γ^2	value	[2]	
		C	alculateu x	value	[2]	

	(iii)	On the basis of your calculated χ^2 value, state the following.		Examiner Only larks Remark
		the degrees of freedom for the test		
		the probability value		
		your decision about the null hypothesis	[3]	
	(iv)	Explain the outcome of your statistical test.		
			[1]	
(c)		in isolated colony of <i>Drosophila</i> on an offshore island, it was fou t 176 <i>Drosophila</i> had vestigial wings and 924 had normal wings		
	(i)	Using the Hardy–Weinberg equation, calculate the number of <i>Drosophila</i> expected to be heterozygous for normal wings.		
		Answer	[3]	
	(ii)	Certain conditions must be met in order to apply the Hardy–Weinberg equation. State one way in which this <i>Drosophila</i> population met these conditions.		
			[1]	

6 (a) The pedigree diagram below shows the incidence of cystic fibrosis in a family. Cystic fibrosis is a recessive autosomal condition.

Examiner Only		
Marks	Remark	

	Paul	Normal male Normal female Affected male Affected female
(i)	Ignoring the possibility of a recent mutation basis for Paul having cystic fibrosis. You the two earlier generations.	
		[2]

(ii) Cystic fibrosis results in a thick, sticky mucus accumulating in the lung passages as a consequence of the malfunctioning of the surrounding respiratory passage cells. This makes patients more prone to infection.

Research is ongoing into the use of gene therapy to treat cystic fibrosis. One technique is to use aerosols to spray normal alleles (within liposomes) into the respiratory passages. The normal alleles provide normal functioning but do not become integrated into the host cell's DNA. Another technique involves the use of viruses as vectors to enable the normal alleles to gain entrance to cells.

The use of gene therapy in treating cystic fibrosis highlights issues surrounding somatic cell gene therapy in general, since it is difficult to modify genes in an already developed organism. Therefore, while gene therapy has huge potential it is still of limited use as a successful treatment.

		Using cystic fibrosis as an example, give three reasons why the		ner Only
		technique of gene therapy is of limited use.	Marks	Remark
		1	_	
			-	
		2	_	
		-	-	
		3		
		[3]	
(b)	gen GM a no safe of C	e transfer of genes from one organism to another produces detically modified organisms (GMOs). However, the production of the involves certain risks and, in order to reduce these risks, the umber of safety precautions have been devised. Describe two the production of the producti	-	
	2		-	
		[2]	1	
		• .	'	
(c)		man genome sequencing raises the possibility of producing signer drugs'.		
	(i)	Define the term 'genome'.		
	()	3		
			-	
		[1]	1	
		·	'	
	/::\			
	(11)	Explain what is meant by a 'designer drug'.		
			_	
			_	
		[1]	I	

Examiner Only

7 Allium ursinum (wild garlic) is a common plant found throughout damper areas of the British Isles.

(a) An investigation was carried out to determine if leaf size in wild garlic was associated with soil nitrate levels. Measurements were taken of the length and width of leaves at various sites in Northern Ireland along with soil nitrate levels. Fifty leaves were measured at each site and the mean values calculated.

The scattergrams below show the results. (Two of the sites investigated, Ballinderry and Marble Arch, are identified on the graphs – these relate to sub-part (ii) of the question.)

(i) Describe the trend shown by each of the above scattergrams.

[2]

There is an obvious difference in the mean leaf width of the plants in Ballinderry and Marble Arch. An experiment was devised to investigate the relative contributions of the genotype and the environment in determining this difference. Seeds from wild garlic plants in Ballinderry and Marble Arch were collected and planted in an experimental garden, where soil nitrate levels were controlled and kept constant.

After a number of years, when the plants in the experimental garden had reached maturity, 50 leaves from each site of origin were sampled and their width measured. The graph below shows these results along with the results of mean leaf width in the natural habitats.

(ii)	Using the information provided, state whether the difference in leaf width between the two sites is mainly genetic or environmental. Explain your answer.

Examiner Only Marks Remark

[2]

b)	sex rare pare isola pop	exual reproduction in wild garlic occurs via bulb formation while rual reproduction produces seeds. The seeds are heavy and are ely dispersed more than a few centimetres away from the ent plant. The result is that populations of wild garlic are effectively ated. However, DNA analysis shows that the wild garlic bulations in the Ballinderry and Marble Arch sites have evolved in the same ancestral population.	Examiner Only Marks Remark
	(i)	Explain how evolutionary change has contributed to the differences in leaf width between the sites.	
	(ii)	It is possible that the wild garlic in the two sites has evolved into different species. Suggest how you could investigate whether this has happened or not.	
		[2]	

Examiner Only

Section B

			M	larks	Remark
	ality (tion.	of written communication is awarded a maximum of 2 marks in this [2]			
8	(div	kingdom Plantae contains the mosses (division Bryophyta), the ferns ision Tracheophyta: subdivision Pteridophyta) and the flowering plants ision Tracheophyta: subdivision Spermatophyta).			
	(a)	Give an account of the life cycle of flowering plants. [10]			
	(b)	Discuss how mosses, ferns and flowering plants are differently adapted for life on land. [6]	ſ		
	(a)	Give an account of the life cycle of flowering plants.			
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		

www.xtrapapers.com

		er Only
M	arks	Remark
•		
1		

Examiner Only

		Marks	Remark
	D: 1 () () () () () () () () () (
(b)	Discuss how mosses, ferns and flowering plants are differently		
	adapted for life on land.		

www.xtrapapers.com

		er Only
M	arks	Remark
•		
1		

Extra lined page	Examin	er Only
	Marks	Remark

	WWW	.xtra	papers	s.com
--	------------	-------	--------	-------

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

ADVANCED General Certificate of Education

Biology

Statistical Formulae and Tables

Statistics Sheets

Statistical Formulae and Tables

1 Definition of Symbols

n = sample size

 \bar{x} = sample mean

 $\hat{\sigma}$ = estimate of the standard deviation

These parameters are obtained using a calculator with statistical functions, remembering to use the function for $\hat{\sigma}$ – which may be designated a different symbol on the calculator – with (n-1) denominator.

2 Practical Formulae

2.1 Estimation of the standard deviation (error) of the mean $(\hat{\sigma}_{\bar{x}})$

$$\hat{\sigma}_{\bar{x}} = \sqrt{\frac{\hat{\sigma}^2}{n}}$$

2.2 Confidence limits for population mean

$$\bar{x} \pm t \sqrt{\frac{\hat{\sigma}^2}{n}}$$

which can be rewritten, in terms of $\hat{\sigma}_{\overline{v}}$, as

$$\bar{x} \pm t(\hat{\sigma}_{\bar{x}})$$

where t is taken from t tables for the appropriate probability and n-1 degrees of freedom.

6964.02 **2**

3 Tests of significance

3.1 Student's t test

Different samples are denoted by subscripts; thus, for example, \bar{x}_1 and \bar{x}_2 are the sample means of sample 1 and sample 2 respectively.

The following formula for *t* is that to be used:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}}}$$

which can be rewritten, in terms of $\hat{\sigma}_{\bar{x}}$, as

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\hat{\sigma}_{\overline{x}_1}^2 + \hat{\sigma}_{\overline{x}_2}^2}}$$

with $n_1 + n_2 - 2$ degrees of freedom.

3.2 Chi squared test

Using the symbols O = observed frequency, E = expected frequency and Σ = the sum of

$$\chi^2 = \sum \frac{\left(O - E\right)^2}{F}$$

with n-1 degrees of freedom (where n is the number of categories).

 Table 1
 Student's t values

d.f.	p = 0.1	0.05	0.02	0.01	0.002	0.001
1	6.314	12.706	31.821	63.657	318.31	636.62
2	2.920	4.303	6.965	9.925	22.327	31.598
3	2.353	3.182	4.541	5.841	10.214	12.924
4	2.132	2.776	3.747	4.604	7.173	8.610
5	2.015	2.571	3.365	4.032	5.893	6.869
6	1.943	2.447	3.143	3.707	5.208	5.959
7	1.895	2.365	2.998	3.499	4.785	5.408
8	1.860	2.306	2.896	3.355	4.501	5.041
9	1.833	2.262	2.821	3.250	4.297	4.781
10	1.812	2.228	2.764	3.169	4.144	4.587
11	1.796	2.201	2.718	3.106	4.025	4.437
12	1.782	2.179	2.681	3.055	3.930	4.318
13	1.771	2.160	2.650	3.012	3.852	4.221
14	1.761	2.145	2.624	2.977	3.787	4.140
15	1.753	2.131	2.602	2.947	3.733	4.073
16	1.746	2.120	2.583	2.921	3.686	4.015
17	1.740	2.110	2.567	2.898	3.646	3.965
18	1.734	2.101	2.552	2.878	3.610	3.922
19	1.729	2.093	2.539	2.861	3.579	3.883
20	1.725	2.086	2.528	2.845	3.552	3.850
21	1.721	2.080	2.518	2.831	3.527	3.819
22	1.717	2.074	2.508	2.819	3.505	3.792
23	1.714	2.069	2.500	2.807	3.485	3.767
24	1.711	2.064	2.492	2.797	3.467	3.745
25	1.708	2.060	2.485	2.787	3.450	3.725
26	1.706	2.056	2.479	2.779	3.435	3.707
27	1.703	2.052	2.473	2.771	3.421	3.690
28	1.701	2.048	2.467	2.763	3.408	3.674
29	1.699	2.045	2.462	2.756	3.396	3.659
30	1.697	2.042	2.457	2.750	3.385	3.646
40	1.684	2.021	2.423	2.704	3.307	3.551
60	1.671	2.000	2.390	2.660	3.232	3.460
120	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.645	1.960	2.326	2.576	3.090	3.291

© Introductory Statistics for Biology second edition Studies in Biology No43 by R E Parker, published by Edward Arnold (Publishers) Ltd, 1991. Reproduced by permission of Cambridge University Press

6964.02 **4**

Table 2 χ^2 values

d.f.	p = 0.900	0.500	0.100	0.050	0.010	0.001
1	0.016	0.455	2.71	3.84	6.63	10.83
2	0.211	1.39	4.61	5.99	9.21	13.82
3	0.584	2.37	6.25	7.81	11.34	16.27
4	1.06	3.36	7.78	9.49	13.28	18.47
5	1.61	4.35	9.24	11.07	15.09	20.52
6	2.20	5.35	10.64	12.59	16.81	22.46
7	2.83	6.35	12.02	14.07	18.48	24.32
8	3.49	7.34	13.36	15.51	20.09	26.13
9	4.17	8.34	14.68	16.92	21.67	27.88
10	4.87	9.34	15.99	18.31	23.21	29.59
11	5.58	10.34	17.28	19.68	24.73	31.26
12	6.30	11.34	18.55	21.03	26.22	32.91
13	7.04	12.34	19.81	22.36	27.69	34.53
14	7.79	13.34	21.06	23.68	29.14	36.12
15	8.55	14.34	22.31	25.00	30.58	37.70
16	9.31	15.34	23.54	26.30	32.00	39.25
17	10.09	16.34	24.77	27.59	33.41	40.79
18	10.86	17.34	25.99	28.87	34.81	42.31
19	11.65	18.34	27.20	30.14	36.19	43.82
20	12.44	19.34	28.41	31.41	37.57	45.32
21	13.24	20.34	29.62	32.67	38.93	46.80
22	14.04	21.34	30.81	33.92	40.29	48.27
23	14.85	22.34	32.01	35.17	41.64	49.73
24	15.66	23.34	33.20	36.42	42.98	51.18
25	16.47	24.34	34.38	37.65	44.31	52.62
26	17.29	25.34	33.56	38.89	45.64	54.05
27	18.11	26.34	36.74	40.11	46.96	55.48
28	18.94	27.34	37.92	41.34	48.28	56.89
29	19.77	28.34	39.09	42.56	49.59	58.30
30	20.60	29.34	40.26	43.77	50.89	59.70
40	29.05	39.34	51.81	55.76	63.69	73.40
50	37.69	49.33	63.17	67.50	76.15	86.66
60	46.46	59.33	74.40	79.08	88.38	99.61
70	55.33	69.33	85.53	90.53	100.43	112.32
80	64.28	79.33	96.58	101.88	112.33	124.84
90	73.29	89.33	107.57	113.15	124.12	137.21
100	82.36	99.33	118.50	123.34	135.81	149.45

© Introductory Statistics for Biology second edition Studies in Biology No43 by R E Parker, published by Edward Arnold (Publishers) Ltd, 1991. Reproduced by permission of Cambridge University Press

6964.02 **5**

www.xtrapapers.com

www.xtrapapers.com

