

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2017

Chemistry

Assessment Unit AS 3

assessing

Module 3: Basic Practical Chemistry Practical Booklet B

[SCH32]

FRIDAY 9 JUNE, AFTERNOON

MARK SCHEME

2	(a)	(i)	Repeated boiling and condensing of a (reaction) mixture	[1]	AVAILABLE MARKS
		(ii)	Place the distillate in a conical flask and add the anhydrous sodium sulfate Swirl until the liquid is clear/no longer cloudy		
			Decant/filter off the liquid	[3]	
	(b)	mas mol 0.15	es of propan-2-ol = 11.5 × 0.79 = 9.085 g of propan-2-ol = 9.085/60 = 0.1514 514 mol of propan-2-ol gives 0.154 mol propanone		
		тю % у	ield = $0.1207/0.1514 \times 100 = 79.72/80\%$	[3]	
	(c)	Pea spe	k between 3200–3600 cm ^{−1} due to —OH [1] is absent from ctrum of distillate [1]		
		Pea	k between 1650–1800 cm ^{−1} due to C = O [1] is present	[3]	
	(d)	Pro	panoic acid would form	[1]	11
3	(a)	(i)	The enthalpy change when one mole of a substance is completely burnt in oxygen under standard conditions	[2]	
		(ii)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[2]	
		(iii)	Copper is a good conductor of heat/copper has a low (specific) heat capacity/copper does not absorb much heat/reduce heat loss	[1]	
		(iv)	To ensure the heat/energy/heat energy is (evenly) distributed (throughout the water)	[1]	
	(b)	(i)	$100 \times 4.2 \times 36 = 15120 \text{ J} = 15.12 \text{ kJ}$ 0.60 g = 0.60/60 = 0.01 mol enthalpy of combustion = -15.12 × 100 = -1512 kJ mol ⁻¹	[3]	
		(ii)	Heat loss (to surroundings)	[1]	10
4	(a)	Liqu attra	iid A is polar, liquid B is non-polar. Polar liquid has dipoles which are acted to the charged rod	[2]	
	(b)	δ	$H = H = \frac{\delta^{-}}{(+)}$		
		δ	+ H /	[1]	3

5	(a)	NH_4CI + $NaOH$ \rightarrow NH_3 + $NaCI$ + H_2O	[1]	AVAILABLE MARKS
	(b)	U-tube	[1]	
	(c)	Removes water	[1]	
	(d)	(Some of) the copper(II) sulfate turns (from white to) blue [1]	[1]	
	(e)	Ammonia [1] is an alkali [1]	[2]	
	(f)	Nitrogen	[1]	7
6	Dip Dip Bric Plac Bub	nichrome wire into concentrated hydrochloric acid into sample/calcium carbonate and place in the blue Bunsen flame ck red flame observed/red flame is observed ce sample/calcium carbonate into dilute hydrochloric acid oble gas produced through limewater	[3]	6
			ျပ	0
			Total	55