www.xtrapapers.com

Centre Number

Candidate Number

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2019

Chemistry

Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry

SCH12

[SCH12] MONDAY 20 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer **all sixteen** questions.

Answer **all ten** questions in **Section A**. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.

Answer all six questions in Section B. You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages. Complete in black ink only. **Do not write with a gel pen.**

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Quality of written communication will be assessed in Question 15(c).

In Section A all questions carry equal marks, i.e. **one** mark for each question.

In Section B the figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Periodic Table of Elements, containing some data, is included with this question paper. <u>11852</u>

20SCH1201

Section A – Multiple Choice

Select the correct response in each case and mark its code letter by connecting the dots as illustrated on the answer sheet.

Each multiple choice question is worth 1 mark.

1 In which of the following does chromium **not** have an oxidation state of +6?

A CrO₃

- B CrO₄²⁻
- C Cr₂O₇²⁻
- D Cr₂O₃
- 2 Which bonding type is described as intermolecular?
 - A Covalent
 - B Ionic
 - C Metallic
 - D van der Waals' forces
- 3 Which of the following is the formula of the nitrite ion?
 - A N³⁻
 - B NH₄⁺
 - $C NO_2^-$
 - $D NO_3^-$

11852

20SCH1202

- 4 25.0 cm³ of 0.10 M sodium hydroxide solution is exactly neutralised by
 - A 12.5 cm^3 of 0.05 M sulfuric acid.
 - B 25.0 cm^3 of 0.05 M sulfuric acid.
 - C 12.5 cm^3 of 0.20 M sulfuric acid.
 - D 25.0 cm^3 of 0.10 M sulfuric acid.
- 5 The electronic configuration of a Group III element is
 - A $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$.
 - $B \quad 1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 3d^{10} \, 4s^2 \, 4p^1.$
 - $C \quad 1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 3d^{10} \, 4s^2 \, 4p^2.$
 - $\mathsf{D} \quad \mathsf{1s}^2 \, \mathsf{2s}^2 \, \mathsf{2p}^6 \, \mathsf{3s}^2 \, \mathsf{3p}^6 \, \mathsf{3d}^{\mathsf{10}} \, \mathsf{4s}^2 \, \mathsf{4p}^3.$
- 6 The bond angle in ammonia is
 - A 104.5°.
 - B 107°.
 - C 109.5°.
 - D 120°.

11852

20

[Turn over

20SCH1203

7 The sulfate(VI) ion can be reduced to sulfur dioxide.

$$SO_4^{2-} \ + \ xH^+ \ + \ ye^- \ \rightarrow \ SO_2 \ + \ zH_2O$$

Which of the following represents the correct values of x, y and z?

	х	у	z
А	2	2	4
В	2	4	2
С	4	2	2
D	4	4	2

8 Which type of titration can use phenolphthalein as a suitable indicator?

- A Strong acid/strong base only
- B Strong acid/strong base and weak acid/strong base
- C Strong acid/strong base and strong acid/weak base
- D Strong acid/weak base and weak acid/strong base
- 9 In which of the following molecules does the central atom obey the octet rule?
 - A BF₃
 - B BeCl₂
 - C CIF₃
 - D PH₃

11852

20SCH1204

- 10 Which species is the most powerful oxidising agent?
 - A Bromide
 - B Bromine
 - C Chloride
 - D Chlorine

11852

[Turn over

20SCH1205

Rewarding g Learning

Hewarding DD g Learning

Rewarding g Learning

<u>C</u>

Section B Answer all six questions in the spaces provided. 11 Water can act as an acid or as a base. It can either lose or gain hydrogen ions. (a) State and explain the shape of a water molecule.
 11 Water can act as an acid or as a base. It can either lose or gain hydrogen ions. (a) State and explain the shape of a water molecule.
 (a) State and explain the shape of a water molecule.
(b) Water can react with hydrogen ions forming hydroxonium ions, H ₃ O ⁺ . (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
 (b) Water can react with hydrogen ions forming hydroxonium ions, H₃O⁺. (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
 [3] (b) Water can react with hydrogen ions forming hydroxonium ions, H₃O⁺. (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
 [3] (b) Water can react with hydrogen ions forming hydroxonium ions, H₃O⁺. (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
 (b) Water can react with hydrogen ions forming hydroxonium ions, H₃O⁺. (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
 (b) Water can react with hydrogen ions forming hydroxonium ions, H₃O⁺. (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
 [3] (b) Water can react with hydrogen ions forming hydroxonium ions, H₃O⁺. (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
 (b) Water can react with hydrogen ions forming hydroxonium ions, H₃O⁺. (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
 (b) Water can react with hydrogen ions forming hydroxonium ions, H₃O⁺. (i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
(i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
(i) Draw a dot and cross diagram to show the bonding in a hydroxonium ion,
[2]
11852

20SCH1206

						[0]
(iii) Sugg form	lest why the l H ₄ O ²⁺ .	nydroxonium	ion does no	ot react with	a hydrogen i	on to
						[4]

20SCH1207

11852

) DED **12** Four new elements have recently been added to the Periodic Table. The four elements are given below, along with their atomic numbers and the mass numbers of their most common isotope.

element	atomic number	mass number
nihonium	113	286
moscovium	115	289
tennessine	117	294
oganesson	118	294

_____ [1]

_____ [1]

_____ [1]

- (a) What is the meaning of the following terms?
 - (i) Atomic number

(ii)	Mass	num	ber
------	------	-----	-----

11852

(iii) Isotopes

- (b) State and explain which element has the most neutrons.

20SCH1208

(c) Suggest why tennessine is placed in Group VII of the Periodic Table.

[1]

- (d) Erbium is a soft, silvery solid that tarnishes slowly in air. It is used in fibre optic cables. There are six known isotopes of erbium and its relative atomic mass is 167.26.
 - (i) Define the term relative isotopic mass.

_____ [2]

(ii) The table below gives the percentage abundances of six isotopes in the mass spectrum of erbium.

relative isotopic mass	161.93	163.93	165.93		167.93	169.94
% abundance	0.14	1.60	33.50	22.87	26.98	14.91

Calculate the missing relative isotopic mass.

_____ [3]

11852

DE)

[Turn over

20SCH1209

www.xtrapapers.com

DD g Learning

ÐÐ

<u>C</u>

]]

Rewardin DD

<u>C</u>

ge g Learning

de learning

ÐÐ

CC Rewarding

<u>O</u>

de g Learning

g Learning g Learning Revealed g Learning g Learning Revealed Revealed Revealed

Rewardin POO g Learning

g Learning G Rewardin DD

O:

13 Chloroauric acid, HAuCl₄, is an orange solid that is used widely in gold refining. During World War II, the Hungarian chemist George de Hevesy dissolved two gold Nobel Prize medals in a mixture of concentrated nitric and hydrochloric acids to prevent the Germans from confiscating them. Later the medals were reconstructed from the dissolved chloroauric acid and returned. (a) The reaction between gold, concentrated hydrochloric acid and concentrated nitric acid produces chloroauric acid, nitrogen(IV) oxide and water. Write the equation for this reaction. [2] (b) Gold is extracted from recycled electronic materials by reaction with chlorine and hydrochloric acid, forming chloroauric acid. Elemental gold is recovered by electrolysis of chloroauric acid. $2\text{Au} \ + \ 3\text{Cl}_2 \ + \ 2\text{HCl} \ \rightarrow \ 2\text{HAuCl}_4$ (i) Deduce the oxidation state of gold in chloroauric acid. _ [1] (ii) With reference to oxidation numbers, explain why this is a redox reaction. [3] 11852

20SCH1210

- (c) When heated, chloroauric acid forms gold(III) chloride and hydrogen chloride gas. The bonding in gold(III) chloride is considered to be covalent.
 - (i) Suggest, in terms of electronegativity, why the bonding in gold(III) chloride is covalent.

(ii) Describe the chemical test for hydrogen chloride gas.

_____ [2]

_____ [1]

11852

[Turn over

20SCH1211

DD g Learning

ÐÐ

Rewarding DD

DD g Learning G Rewardin DD

CC Rewarding DD

Rewardin DO g Learning

g Learning

ÐÐ

Rewardin POD g Learning

g Learning G Rewardin DD

ÐÐ

<u>C</u>

ÐÐ

CC Rewardin DD

Revealeding 200 9 Learning

Rewardin, DO g Learning

g Learning G Rewardin DD

- **14** The recommended daily allowance for salt, sodium chloride, is 6.0g. Eating too much salt can lead to high blood pressure, potentially causing heart disease and strokes.
 - (a) State the electronic configuration of a sodium atom and use it to explain why sodium is regarded as an s-block element.
 - _____ [2]
 - (b) (i) Define the term Avogadro's constant.
- _____ [1]
- (ii) Calculate the number of sodium ions in the recommended daily allowance of sodium chloride.
 - __ [2]
- (c) A solid sample of salt was analysed to confirm the identity of the ions present. A flame test was first conducted on the sample using nichrome wire and concentrated hydrochloric acid to identify sodium ions. The presence of chloride ions was subsequently confirmed.
 - (i) State two reasons why *nichrome* wire was used.

____ [2]

11852

20SCH1212

www.xtrapapers.com

	(11)	State two reasons why concentrated hydrochloric acid was used.	
			_ [2]
	(iii)	State the colour observed in the flame test.	
			_ [1]
(d)) Des	scribe how the presence of chloride ions could be confirmed in the solid s	alt.
			_ [4]
			- 1.1
<i>.</i>			
(e)		econd salt sample was thought to be contaminated with sodium carbonate scribe a chemical test to confirm the presence of carbonate ions.	e.
(e)			e.
(e)			e.
(e)			
(e)		scribe a chemical test to confirm the presence of carbonate ions.	

20SCH1213

ĐĐ

- (f) The salt sample, of mass 6.0 g, contaminated with sodium carbonate was dissolved in water. A solution of magnesium chloride was added, forming a precipitate of magnesium carbonate. The precipitate was filtered off and dried to give 1.4 g of magnesium carbonate.
 - (i) Draw a dot and cross diagram to show the bonding in magnesium chloride showing all the outer electrons.

(ii) Write the equation for the reaction between sodium carbonate and magnesium chloride.

[2]

[2]

20SCH1214

-		
-	Percentage of sodium carbonate in the sample	
-	Mass of sodium carbonate in the sample	
ļ	Relative formula mass of sodium carbonate	
	Number of moles of sodium carbonate	
	Number of moles of magnesium carbonate	
	Relative formula mass of magnesium carbonate	
	Polative formula mass of magnesium carbonate	

20SCH1215

11852

ĐĐ

g Learning

Hewardin, <u>C</u> Rewardin DD g Learning Œ Rewarding DD g Learning Œ Hewardin; Bewardin Rewardin POD g Learnin Œ Ø Œ Rewardin DOD g Learning Œ Pewardin DD <u>C</u> Rewarding g Learning <u>C</u> Rewarding g Learning Ø g Learning Œ Rewardin DD g Learning

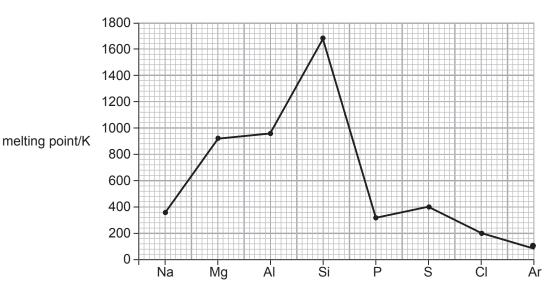
Revearcher g Learning (Learning Learning

Rewardin 9 Learning Rewardin Rewardin 9 Learning

Rewardin, g Learning

Rewarding g Learning

g Learning


<u>C</u>

(a)	Sta	te and explain the general trend in first ionisation energy across Period three.
		[3]
(b)	(i)	Write an equation, including state symbols, for the first ionisation energy of phosphorus.
		[2]
	(ii)	Explain why the first ionisation energy of phosphorus is higher than that of sulfur.
		[2]

20SCH1216

(c) The graph below shows the melting points of the elements in the third Period.

With reference to the structure and bonding of the elements, explain the change in melting point from **silicon** to **argon**.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

	[6]
[Turn over	 [0]
[Turn over	
[Turn over	
-	[lurn over
	-

20SCH1217

11852

 \mathcal{F}

90 g Learning

ÐÐ

<u>C</u>

]]

CC Rewardin DD

Ci Rewardin DD

CC Rewarding DD

Rewardin POD g Learning CC Rewardin Rewardin

Rewarding DD

Rewardin DD

Rewarding DD

Rewarding DD

Rewarding DD

CC Rewarding

Revearded 200 2 Learning 2 Learning

Rewardin POO g Learning

g Learning G Rewardin DD

16 Lead(II) iodide is yellow and was once used as a pigment in paint until concerns over its toxicity led to its use being discontinued. It has a low solubility in water. (a) Lead(II) iodide can be prepared by reaction between solutions of potassium iodide and lead(II) nitrate. Write the equation for this reaction. _ [2] (b) 75.6 mg of lead(II) iodide dissolve in 100 cm³ of water at 20°C. Calculate the molarity of iodide ions in a saturated solution of lead(II) iodide at 20°C. _____ [4] (c) Chlorine water was added to potassium iodide solution in a test tube. (i) State the colour observed. __ [1] (ii) A solution of starch was then added to the test tube. State the colour observed. __ [1] 11852

20SCH1218

	(d)	(i)	State three observations made when concentrated sulfuric acid is added to solid potassium iodide.)
			[:	3]
		(ii)	Explain why concentrated phosphoric acid does not give iodine when added to solid potassium iodide.	d
			['	1]
		_		
			THIS IS THE END OF THE QUESTION PAPER	
		-		
11852				

Œ

Ð

I Learning Rewarding I. COO I Learning Rewarding I. COO Rewarding I.

Learning Rewarding L

Rewarding L D Learning Rewarding L

Rewarding L D Learning Rewarding L

Increased of the second second

Remaining Learning Rewarding L

Rewarding L D Learning Rewarding L

Rewarding L

Rewarding L

Reveating L

Rewarding L

Rewarding L Rewarding L Rewarding L Rewarding L

) DED *20SCH1219*

DO NOT WRITE ON THIS PAGE

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

241678

20SCH1220

General Information

1 tonne = 10^{6} g 1 metre = 10^{9} nm One mole of any gas at 293 K and a pressure of 1 atmosphere (10^{5} Pa) occupies a volume of 24 dm³ Avogadro Constant = 6.02×10^{23} mol⁻¹ Planck Constant = 6.63×10^{-34} Js Specific Heat Capacity of water = $4.2 \text{ J g}^{-1} \text{K}^{-1}$ Speed of Light = $3 \times 10^{8} \text{ m s}^{-1}$

Characteristic absorptions in IR spectroscopy

Wavenumber/cm ⁻¹	Bond	Compound				
550-850	C–X (X = Cl, Br, I)	Haloalkanes				
750–1100	C–C	Alkanes, alkyl groups				
1000–1300	C0	Alcohols, esters, carboxylic acids				
1450–1650	C=C	Arenes				
1600–1700	C=C	Alkenes				
1650–1800	C=0	Carboxylic acids, esters, aldehydes,				
		ketones, amides, acyl chlorides				
2200–2300	C≡N	Nitriles				
2500–3200	O-H	Carboxylic acids				
2750–2850	C–H	Aldehydes				
2850–3000	C–H	Alkanes, alkyl groups, alkenes, arenes				
3200–3600	O-H	Alcohols				
3300–3500	N-H	Amines, amides				

Proton Chemical Shifts in Nuclear Magnetic Resonance Spectroscopy (relative to TMS)

Chemical Shift	Structure	
0.5–2.0	-СН	Saturated alkanes
0.5–5.5	-0 H	Alcohols
1.0–3.0	-N H	Amines
2.0–3.0	-CO-C H	Ketones
	-N-C H	Amines
	C ₆ H ₅ –C H	Arene (aliphatic on ring)
2.0–4.0	Х–С Н	X = Cl or Br (3.0–4.0)
		X = I (2.0–3.0)
4.5–6.0	-C=CH	Alkenes
5.5–8.5	RCONH	Amides
6.0–8.0	$-C_{6}H_{5}$	Arenes (on ring)
9.0–10.0	-CHO	Aldehydes
10.0–12.0	-COO H	Carboxylic acids

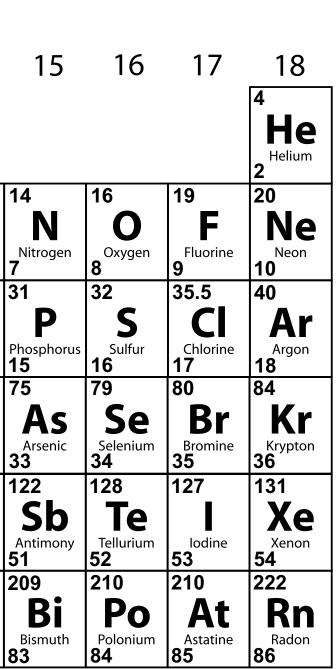
Including the Pe

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations

gce a/as examinations chemistry

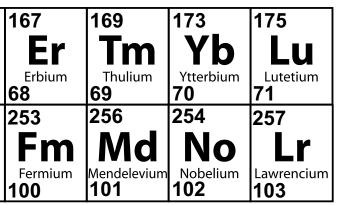
These chemical shifts are concentration and temperature dependent and may be outside the ranges indicated above.

© CCEA 2017 COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT 29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG Tel: +44 (0)28 9026 1200 Fax: +44 (0)28 9026 1234 Email: info@ccea.org.uk Web: www.ccea.org.uk


For first teaching from September 2016 For first award of AS Level in Summer 2017 For first award of A Level in Summer 2018 Subject Code: 1110

Data Leaflet Including the Periodic Table of the Elements

For the use of candidates taking Advanced Subsidiary and Advanced Level Examinations


Ι	II			THE	PER		CTAB Group		F ELI	EMEN	ITS		IV
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1 H Hydrogen 1													
7 Li Lithium 3 23	9 Beryllium 4 24											11 B 5 27	12 C ^{Carbon} 6 28
Na Sodium	Magnesium 12											Aluminium 13	Si
39 K Potassium 19	40 Calcium 20	45 SC Scandium 21	48 Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe 26 ^{Iron}	59 Co Cobalt 27	59 Ni 28	64 Cu ^{Copper} 29	65 Zn 30	70 Gallium 31	73 Ge Germanium 32
85	88	89	91	93	96	98	101	103	106	108	112	115	119
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium		Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50
133	137	139	178	181	184	186	190	192	195	197	201	204	207
Caesium 55	Ba Barium 56	Lanthanum	Hafnium 72	Tantalum	W Tungsten 74	Re Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Hg Mercury 80	Thallium 81	Pb Lead 82
223	226	227	261	262	266	264	277	268	271	272	285		1
Francium 87	Radium 88	Actinium 89	Rutherfordium	Dubnium 105	Sg Seaborgium 106	Bh ^{Bohrium} 107	HS Hassium 108	Meitnerium 109	DS Darmstadtium 110	Roentgenium 111	Copernicium 112	n	
	03 Actir		ies	140 Cerium 58	141 Praseodymium 59	144 Neodymium 60	145 Pm Promethium 61	150 Sm Samarium 62	152 Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dysprosium 66	165 HO Holmium 67
$\begin{vmatrix} a \\ b \end{vmatrix}$	a = relati (appr x = atom b = atom	ox) nic symbo	ol	232 Th Thorium 90	231 Pa Protactinium	238 U Uranium	237 Np Neptunium 93	²⁴² Pu	243 Americium 95	247 Cm ^{Curium} 96	245 Bk Berkelium 97	251 Californium 98	254 Es

VI VII

0

V

