www.xtrapapers.com

Centre Number

Candidate Number

ADVANCED General Certificate of Education 2019

Chemistry

Assessment Unit A2 2

assessing

Analytical, Transition Metals, Electrochemistry and Further Organic Chemistry

ACH22

[ACH22]

TUESDAY 11 JUNE, AFTERNOON

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer all fifteen questions.

Answer **all ten** questions in **Section A**. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.

Answer all five questions in Section B.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages. Complete in black ink only. **Do not write with a gel pen.**

INFORMATION FOR CANDIDATES

The total mark for this paper is 110.

Quality of written communication will be assessed in Questions 11(g) and 13(d).

In Section A all questions carry equal marks, i.e. one mark for each question.

In Section B the figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Periodic Table of Elements, containing some data, is included with this question paper. 12188

28ACH2201

ÐÐ

Section A

For each of the following questions only **one** of the lettered responses (A–D) is correct.

Select the correct response in each case and mark its code letter by connecting the dots as illustrated on the answer sheet.

1 Part of a mass spectrum is shown below.

28ACH2202

- 2 Three acetylating agents, arranged in order of the vigour of their reaction with phenylamine, starting with the most reactive, are
 - A ethanoyl chloride, ethanoic acid, ethanoic anhydride.
 - B ethanoyl chloride, ethanoic anhydride, ethanoic acid.
 - C ethanoic anhydride, ethanoic acid, ethanoyl chloride.
 - D ethanoic anhydride, ethanoyl chloride, ethanoic acid.
- **3** Hydrogen sulfide is oxidised by acidified potassium manganate(VII) as shown by the following half-equation:

 $H_2S \rightarrow S + 2H^+ + 2e^-$

The volume, in cm³, of 0.02 M KMnO₄ required to oxidise 0.001 mol of H_2S is

- A 10.
- B 20.
- C 40.
- D 50.

4 How many aromatic isomers of dichlorobenzene exist?

- A 1
- B 2
- C 3
- D 4

12188

[Turn over

28ACH2203

- **5** On complete combustion, 6.0 g of an organic compound gave 8.8 g of carbon dioxide and 3.6 g of water as the only products. The empirical formula of the compound is
 - A CH₂.
 - B CHO.
 - C CH₂O.
 - D C₂H₄O.
- **6** Excess ethanoyl chloride reacts with $CH_2OHCH_2NH_2$ to produce
 - A CH₂OHCH₂NHCOCH₃.
 - B CH₂OHCH₂N(COCH₃)₂.
 - C CH₃COOCH₂CH₂NH₂.
 - $\mathsf{D} \quad \mathsf{CH}_3\mathsf{COOCH}_2\mathsf{CH}_2\mathsf{NHCOCH}_3.$
- 7 Which substance can exhibit geometrical isomerism?
 - A [Co(NH₃)₅Cl]²⁺ octahedral structure
 - B Cu(CN)₂ linear structure
 - C [Pt(NH₃)₂Cl₂] square planar structure
 - D [Zn(NH₃)₂Cl₂] tetrahedral structure
- 8 Salicylic acid is used in the removal of warts because it
 - A alters the pH that warts grow in.
 - B attacks the warts and removes them.
 - C destroys the alkaline environment that warts flourish in.
 - D destroys the bacteria producing warts.

12188

28ACH2204

- A lithal.
- B lithium tetrahydridaluminate(III).
- C lithium tetrahydridealuminate(III).
- D lithium tetrahydridoaluminate(III).
- 10 When the following compound is completely hydrolysed

CN | CH₂Br

which product is formed?

- $\begin{array}{ccc} A & CN & & B & CONH_2 \\ & & & \\ & & CH_2OH & & CH_2Br \end{array}$
- C COOH D COOH CH₂OH CH₂Br

12188

DE)

[Turn over

28ACH2205

Section B

Answer all five questions in the spaces provided

11 Aspartame is an artificial sweetener which is about 200 times sweeter than sugar. It is a methyl ester of a dipeptide formed from the two α -amino acids, aspartic acid and phenylalanine.

Aspartic acid

HOOCCH₂CH(NH₂)COOH

Phenylalanine

C₆H₅CH₂CH(NH₂)COOH

aspartame

- (a) On the structure of aspartame, shown above, circle and label:
 - (i) the ester group
 - (ii) the peptide link
- (b) Both aspartic acid and phenylalanine are found in nature and are known as α -amino acids. Suggest the meaning of the term α -amino acid.

_ [2]

[1]

[1]

12188

28ACH2206

<u>C</u>

(c) Explain why both aspartic acid and phenylalanine are optically active. _____ [1] (d) Suggest why aspartic acid is classified as an acidic amino acid and phenylalanine is classified as a neutral amino acid. _____ [2] (e) Draw the structures of the two peptides which are produced when the following amino acids are reacted with each other. R₁CH(NH₂)COOH and R₂CH(NH₂)COOH [2] (f) Name one reagent that can be used to hydrolyse peptides. _____ [1] [Turn over 12188

Œ

DO Learning OCE Rewarding I

Rewarding L

Rewarding L PO Learning Rewarding L

Ð

l Learning OG Rewarding L

Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L

Rewarding L

Ð

Learning

e Learning CEE Brewarding L

Rewarding L

Constant Constant Rewarding L

CC Rewarding L CC CC CC CC

Ð

Rewarding L

Learning Rewarding L Learning Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L

DO Learning OCE Rewarding L

DE)

28ACH2207

www.xtrapapers.com

	(g)	When aspartame is hydrolysed a mixture of aspartic acid, phenylalanine and methanol is produced. The mixture of products can be analysed using TLC. Explain, giving full experimental detail, how you would use TLC to prove that phenylalanine and aspartic acid are produced and why methanol cannot be detected.
		In this question you will be assessed on using your written communication skills including the use of specialist scientific terms.
		[6]
	(h)	Aspartame is stable at pH 4.3 but breaks down at elevated temperatures or at high pH. Suggest why it is not suitable to use as a sweetener in baking but is ideal for soft drinks.
		[2]
12188		

28ACH2208

<u>C</u>

12188

(i)	When aspartame is made, it is important to use the correct chiral isomers of
	phenylalanine and aspartic acid. The binding sites for the taste receptors on the
	tongue act in a similar way to the mechanism of the action of enzymes. Explain
	the action of aspartame on taste receptors.

[2]

[Turn over

28ACH2209

12 The reaction between iron(III) and iodide ions may be studied in a cell as shown below.

A solution of iron(III) chloride is placed in one beaker and a solution of potassium iodide in the other beaker. A salt bridge connects the beakers.

- (a) The salt bridge can be made using a glass tube or paper.
 - (i) Name a chemical which is usually used to make a salt bridge.

·		_ [1]
((ii) Describe how you would make a salt bridge from paper in the laboratory	<i>'</i> .
		_ [1]
((iii) State two reasons for using a salt bridge in an electrochemical cell.	
		_ [2]
12188		_

28ACH2210

<u>C</u>

12188						[Turn over
						[2]
						[2]
	(iv)	Explain which way	electr	ons will flow	in the cell.	[']
	(iii)	Write the equation	for the	e reaction tak	king place.	[1]
	(ii)	Write a conventiona	al repr	resentation fo	or the cell.	[2]
						[2]
	(i)	Calculate the emf c	of the	cell.		
		$I_2(aq) + 2e$	4	2I⁻(aq)	+0.54 V	
		$Fe^{3+}(aq) + e$	#	Fe ²⁺ (aq)	+0.77 V	
(d)	The	electrode potentials	s for tl	he two half-c	ells taking place in the	reaction are:

28ACH2211

Ð

www.xtrapapers.com

(c)	Befe Fe ²⁻ eac	ore the cell operates Fe ³⁺ ions and I [–] ions are present. After the cell operates ⁺ ions are present together with I ₂ molecules. State how you would test for h of these species and the results expected for positive tests.	\$
	(i)	Fe ³⁺	
		[2	?]
	(ii)	Fe ²⁺	
		[2	_ 2]
	(iii)	I-	
		[2	2]
	(iv)	I ₂	
		[2	-2]
12188			

28ACH2212

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

12188

Œ

[Turn over

28ACH2213

90 g Learning

ÐÐ

CC Rewardin DD

0

ÐÐ

Rewardin POD g Learning

ÐÐ

<u>O</u>

90 g Learning C

ÐÐ

CC Rewardin DD

CC Rewardin DD

<u>O</u>

Dearning g Learning Revaration Dearning g Learning g Learning Revaration Revaration Revaration Dearning Revaration Dearning

Rewardin POD g Learning

g Learning G Rewardin DD

Rewardin Period g Learning Rewardin Period

Rewardin POO g Learning

g Learning GCC Rewarding

<u>O</u>

13 Petroselinic acid is a long chain fatty acid which is found in coriander seeds.

CH₃(CH₂)₁₀CH=CH(CH₂)₄COOH

petroselinic acid

It is of interest because ozonolysis gives auric acid and adipic acid, used in the manufacture of nylon.

$$CH_{3}(CH_{2})_{10}CH = CH(CH_{2})_{4}COOH \xrightarrow{O_{3}} CH_{3}(CH_{2})_{10}COOH + HOOC(CH_{2})_{4}COOH$$

petroselinic acid

auric acid

adipic acid

- (a) Petroselinic acid is a positional isomer of oleic acid. It has the double bond in position 6; in oleic acid it is in position 9.
 - (i) Suggest the meaning of the term **positional isomer**.
 - (ii) Draw the structures of the two fatty acids which are produced when oleic acid is ozonolysed.

_ [2]

12188

28ACH2214

(b) The amount of petroselinic acid in coriander seeds can be determined by GLC. Petroselinic acid, which is a white solid, is first converted into its methyl ester which is a liquid. (i) Suggest why petroselinic acid is a solid and methyl petroselinate is a liquid. _____ [2] (ii) Suggest why petroselinic acid is converted into the methyl ester for GLC analysis. _____ [1] (iii) Explain how the percentage of petroselinic acid in a sample can be determined from a GLC chromatography trace. _____ [2] [Turn over

28ACH2215

12188

)A)

	(c)	Nylo con	on is made from the reaction of adipic acid with 1,6-diaminohexane. It is a densation polymer.	
		(i)	Draw one repeating unit of the nylon polymer formed when adipic acid reacts with 1,6-diaminohexane.	
				[2]
		(ii)	Explain what is meant by the term condensation polymer.	
				[1]
		(iii)	Explain why nylon contains an amide bond and not a peptide link despite the fact that both bonds have the same structure.	
				[1]
		(iv)	Kevlar is a polymer formed by the reaction of 1,4-diaminobenzene with terephthaloyl dichloride. Write the equation for the reaction of one molecul of 1,4-diaminobenzene with one molecule of terephthaloyl dichloride.	е
				[3]
12188				

28ACH2216

www.xtrapapers.com

	[2
(d)	Enzymes are also condensation polymers. Explain the primary, secondary and tertiary structures of enzymes. Include in your answer an explanation of the effect of pH and temperature on enzyme activity.
	In this question you will be assessed on using your written communicatio skills including the use of specialist scientific terms.
	[0
0	[Turn o

Œ

Learning Rewarding L D Learning Learning Rewarding L

Rewarding L D Learning G Rewarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding I Rewarding L. Ð CCC Rewarding L Rewarding L Rewarding L. Ð CCC Bewardina L Hewarding Rewarding L Rewarding L Rewarding L

Rewarding (

Rewarding L

Learning

Rewarding L D Learning Rewarding L

ĐĐ

28ACH2217

14 Pentane-2,4-dione (acetylacetone) is an unusual compound. It exists as a mixture of isomers.

- (a) The nmr spectrum of pentane-2,4-dione at room temperature shows that it is a mixture of isomers.
 - (i) On the following nmr axes draw the expected nmr spectrum, including an integration curve, of pentane-2,4-dione as the keto form. Use the data leaflet for your answer.

28ACH2218

(ii) The following is the nmr spectrum of pentane-2,4-dione as an enol at room temperature. Using the data in the data leaflet, label the peaks in the spectrum with the appropriate hydrogen atoms from the enol form.

(b) The infrared spectrum of pentane-2,4-dione is shown below. Explain how it suggests that pentane-2,4-dione is a mixture of isomers.

28ACH2219

12188

Rewarding g Learning

Increaseding g. Learning g. Learning

g Learning Rewardin g Learning

<u>C</u> Œ Rewardin POD g Learning Œ Pewardin DD <u>C</u> Rewarding DDD g Learning <u>C</u> Hewardin DDD g Learning CC . Hewardin DDD g Learning <u>C</u> Rewardin DD g Learnin

Constant Revealed Participation Participatio

g Learning Rewarding g Learning Rewarding g Learning g Learning

g Learning Rewarding g Learning

<u>Cearrang</u>

(c)	It is bec sub	possible to titrate the enol isomer of pentane-2,4-dione using bromine ause the C==C bond reacts faster in an addition reaction than in any possible stitution reaction with bromine.
	(i)	How would you slow down the substitution reaction before the titration was carried out?
		[1]
	(ii)	How would you know that the end point had been reached?
	(iii)	In a titration, 25.0 cm ³ of a 0.008 M solution of pentane-2,4-dione was reacted with a 0.002 M solution of bromine. The titration value was 4.6 cm ³ of bromine solution. Use these values to calculate the percentage of pentane-2,4-dione which exists in the enol form.
		[4]

12188

[1]

- (d) Pentane-2,4-dione is a ligand represented by the symbol acac. It combines with many transition metal ions to form complexes.
 - (i) How many coordinate bonds can pentane-2,4-dione form?
 - (ii) It reacts with copper(II) ions to form [Cu(acac)₃]²⁺ which has an octahedral structure. Draw a 3D structure of this octahedral complex using dotted lines and wedges.

[2]

(iii) Explain why $[Cu(acac)_3]^{2+}$ reacts with edta.

- _ [2]
- (e) Pentane-2,4-dione does not form a hydrazone with phenylhydrazine. Instead, it forms a substituted pyrazole which has a melting point of 107–108 °C. Explain how this reaction can be used to identify pentane-2,4-dione.
 - _____ [1]

[Turn over

28ACH2221

12188

)E)

28ACH2222

DEI

g g Learning

g Learning

ÐÐ

Revearding Period g Learning g Learning g Learning G G

g Learning Rewardin g Learning g Learning

g Learning G Rewarding

CC Rewardin DD

Rewardin Pewardin g Learning Rewardin Pewardin

Rewardin PO g Learning

DD g Learning GG Rewardin DD

<u>C</u>

28ACH2224

(e) The reduction of the nitrobenzoic acid is carried out using tin and concentrated hydrochloric acid. (i) Write the equation for the reaction of tin with hydrochloric acid. [2] (ii) The anthranilic acid is obtained as the phenylammonium salt. Draw the structure of the salt and explain why the addition of sodium hydroxide solution liberates the amino group but does not produce anthranilic acid. _____ [3] THIS IS THE END OF THE QUESTION PAPER *28ACH2225*

12188

www.xtrapapers.com

BLANK PAGE

DO NOT WRITE ON THIS PAGE

12188

28ACH2226

BLANK PAGE

DO NOT WRITE ON THIS PAGE

12188

Œ

Learning Reveating L Proventing L Provent

Rewarding L

Learning Constraints Revearding L Constraints Revearding L

Learning Rewarding L

Learning Rewarding L Dearning Learning Rewarding L Rewarding L Dearning Color Learning

I Learning Proceeding I. Proceedin

Learning Rewarding L COS Rewarding L COS Rewarding L COS Rewarding L

28ACH2227

DO NOT WRITE ON THIS PAGE

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

243678

28ACH2228

General Information

1 tonne = 10^{6} g 1 metre = 10^{9} nm One mole of any gas at 293 K and a pressure of 1 atmosphere (10^{5} Pa) occupies a volume of 24 dm³ Avogadro Constant = 6.02×10^{23} mol⁻¹ Planck Constant = 6.63×10^{-34} Js Specific Heat Capacity of water = $4.2 \text{ J g}^{-1} \text{ K}^{-1}$ Speed of Light = $3 \times 10^{8} \text{ m s}^{-1}$

Characteristic absorptions in IR spectroscopy

Wavenumber/cm ⁻¹	Bond	Compound
550–850	C–X (X = Cl, Br, I)	Haloalkanes
750–1100	C–C	Alkanes, alkyl groups
1000–1300	C–O	Alcohols, esters, carboxylic acids
1450–1650	C=C	Arenes
1600–1700	C=C	Alkenes
1650–1800	C=O	Carboxylic acids, esters, aldehydes,
		ketones, amides, acyl chlorides
2200–2300	C≡N	Nitriles
2500–3200	O-H	Carboxylic acids
2750–2850	C–H	Aldehydes
2850–3000	C–H	Alkanes, alkyl groups, alkenes, arenes
3200–3600	O-H	Alcohols
3300–3500	N-H	Amines, amides

Proton Chemical Shifts in Nuclear Magnetic Resonance Spectroscopy (relative to TMS)

Chemical Shift	Structure	
0.5–2.0	–C H	Saturated alkanes
0.5–5.5	-0 H	Alcohols
1.0-3.0	-N H	Amines
2.0–3.0	-CO-C H	Ketones
	-N-C H	Amines
	C ₆ H ₅ –C H	Arene (aliphatic on ring)
2.0–4.0	X–C H	X = Cl or Br (3.0–4.0)
		X = I (2.0–3.0)
4.5–6.0	-C=C H	Alkenes
5.5–8.5	RCONH	Amides
6.0-8.0	$-C_6H_5$	Arenes (on ring)
9.0–10.0	–C H O	Aldehydes
10.0–12.0	-COO H	Carboxylic acids

Data Leaflet Including the Periodic Table of the Elements

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations

gce a/as examinations chemistry

These chemical shifts are concentration and temperature dependent and may be outside the ranges indicated above.

© CCEA 2017 COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT 29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG Tel: +44 (0)28 9026 1200 Fax: +44 (0)28 9026 1234 Email: info@ccea.org.uk Web: www.ccea.org.uk

For first teaching from September 2016 For first award of AS Level in Summer 2017 For first award of A Level in Summer 2018 Subject Code: 1110

For the use of candidates taking Advanced Subsidiary and Advanced Level Examinations

Ι	II			THE	PER	IODIC C	C TAB Group	LE O	FELI	EMEN	ITS	III	IV
1	2	3	4	5	б	7	8	9	10	11	12	13	14
1 H Hydrogen 1		_											
7 Lithium 3	9 Beryllium 4											11 Boron 5	12 C Carbon 6
23 Na ^{Sodium} 11	24 Mg Magnesium 12											27 Al Aluminium 13	28 Silicon 14
39 K Potassium 19	40 Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 Vanadium 23	52 Chromium 24	55 Manganese 25	56 Fe 26 ^{Iron}	59 Co Cobalt 27	59 Ni 28	64 Cu ^{Copper} 29	65 Zn 30	70 Gallium 31	73 Germanium 32
85	88	89	91	93	96	98 T -	101 D	103	106	108	112	115	119 C
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Nolybdenum	Technetium	Ruthenium	Rhodium	Palladium	AG Silver	Cadmium	Indium 49	SN ^{Tin}
133	137	139 *	178	181	184	186	190	192	195	197	201	204	207
Caesium	Barium	La Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Pt Platinum	Gold	Mercury	Thallium	PD Lead
223	226	227	261	262	266	264	277	268	271	272	285		02
Francium	Ra Radium		Rutherfordium	Dubnium	Seaborgium	Bh	HS Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	ו	
01	00	09	104	140	1/1	144	145	150	152	157	150	_ 	165
* 58 – 71 Lanthanum series † 90 – 103 Actinium series			Cerium 58	Praseodymium	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	
a b	<pre>a = relati (appr x = atom b = atom</pre>	ve atom ox) nic symbo nic numb	ic mass ol per	232 Th Thorium 90	231 Pa Protactinium 91	238 U ^{Uranium} 92	237 Neptunium 93	242 Pu Plutonium 94	243 Americium 95	247 Curium 96	245 Bk Berkelium 97	251 Californium 98	254 ES Einsteinium 99

VI VII

0

V

