www.xtrapapers.com

Centre Number

Candidate Number

ADVANCED General Certificate of Education 2019

Chemistry

Assessment Unit A2 3 assessing Further Practical Chemistry Practical Booklet B (Theory)

ACH32

[ACH32] WEDNESDAY 19 JUNE, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all six** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Periodic Table of Elements (including some data) is provided.

<u>12</u>318

16ACH3201

PA g Learning

Rewardin DD

Rewardin PD g Learning CO DD g Learning CO Rewardin Rewardin Rewardin

<u>O</u>

90 g Learning

ÐÐ

Contracting Period P

Rewardin 900 g Learning Rewardin Personal

<u>O</u>

ÐÐ

Acvardance POD g. Learning g. Learning g. Learning DOD g. Learning g. Lear

Rewardin DD g Learning

Rewardin POD g Learning

g Learning G Rewarding

<u>C</u>

1 A mixture of amino acids was analysed using two-way paper chromatography. The first "solvent" used was a solution of butan-1-ol in ethanoic acid. The second "solvent" was a solution of phenol in water. The chromatogram obtained is shown below.

_ [4]

12318

16ACH3202

(b) Calculate the $\rm R_{f}$ values for the amino acid, X, in solvents 1 and 2. Measure to the middle of the spot. Solvent 1 Solvent 2 [1] (c) Without access to R_f data, how would you show that the amino acid leucine was present and the amino acid serine was absent from the mixture? _____ [2] (d) Why is two-way paper chromatography a better method for separating amino acids than one-way paper chromatography? _____ [1] (e) GLC MS can be used to identify drugs and determine their purity. (i) How would GLC indicate that a drug was pure? _____ [1] (ii) Give two ways in which the identity of a drug can be established using GLC MS. _ [2] [Turn over 12318

16ACH3203

DE)

2 The standard electrode potentials of two half-cells are given below.

 $Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$ $E^{\Theta} = -0.76V$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$ $E^{\Theta} = +0.80V$

(a) Define the term standard electrode potential.

- _ [2]
- (b) (i) Draw a labelled diagram to show the cell which you would use to measure the potential difference between these two half-cells under standard conditions. Your diagram should include the concentrations of any ions in solution and the temperature at which the measurement would be made.

12318

16ACH3204

www.xtrapapers.com

(ii) Calculate the emf of this cell.

Œ

Rewarding L

Rewarding L

Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L

Ð

Rewarding L

Rewarding L

L coming L coming Reverding L Reverding L

I Learning (Learning Learning (Learning (Learning (Learning (Learning (Learning (Learning) (Learning (Learning) (Le

r Learning OG Rewarding L

Rewarding L

Hewarding L

Learning CCS Rewarding L CCS A Learning CCS Rewarding L

Learning Constraints Rewarding L Constraints Rewarding L Constraints Rewarding L

ÐÐ

Learning

e Learning CCE Rewarding L

Learning

Rewarding L D Learning C Rewarding L

DE)

_____ [1]

(c) Magnesium is a stronger reducing agent than zinc. The standard electrode potential of the magnesium half-cell can be determined by setting up the following cell:

 $Mg(s) \mid Mg^{2+}(aq) \mid \mid Zn^{2+}(aq) \mid Zn(s)$

This cell has an emf of +1.61 V. Calculate the standard electrode potential of the magnesium half-cell.

_____ [1]

12318

[Turn over

16ACH3205

[3]

DD g Learning

ÐÐ

<u>C</u>

ÐÐ

CC Rewardin DD

Revardin Revardin g. Learning g. Learning g. Learning g. Learning g. Learning g. Learning g. Learning

Rewardin PO g Learning

ÐÐ

Rewardin DD

)

Rewarding DD

Rewarding Rewarding g Learning g Learning g Learning Rewarding Rewarding

Revardin 9. Learning 9. Learning

Rewardin, DO g Learning

g Learning G Rewardin DD

- 3 A series of tests was carried out on two organic liquids, **A** and **B**.
 - (a) Liquid A produced an orange solid when reacted with 2,4-dinitrophenylhydrazine and a silver mirror when heated with Tollens' reagent. The mass spectrum of A showed a molecular ion peak at 58.
 - (i) To which homologous series does **A** belong? Explain how the results of the chemical tests are consistent with your conclusion.

- (ii) Name A and identify the molecular ion.
- (b) Liquid B reacted vigorously with phosphorus pentachloride, and an aqueous solution of B gave effervescence on addition of sodium carbonate. The high resolution nmr spectrum of B contains a singlet, a quartet and a triplet.
 - (i) To which homologous series does **B** belong? Explain how the results of the chemical tests are consistent with your conclusion.

_ [1]

12318

16ACH3206

_____ [2]

[2]

(ii) Give the structure of **B** and circle the hydrogen(s) responsible for the singlet. Suggest a chemical shift value for the position of the singlet.

(iii) Explain how the spin-spin splitting in the nmr spectrum is consistent with the structure given in (ii).

12318

Œ

D Learning OCE Rewarding L

Rewarding L

Rewarding L

Rewarding L

Ð

Rewarding L

Rewarding L D Learning G Rewarding L

Learning Rewarding L DO Learning Learning Rewarding L DO Rewarding L

Aewalding L D (Learning Rewarding L D (Learning Rewarding L Rewarding L

Rewarding L

Rewarding L

Learning Learning Rewarding L Composition Learning Learning Learning Rewarding L

Rewarding L

tearning Rewarding L

Ð

Rewarding L

Learning

E)

[Turn over

16ACH3207

4 In the presence of concentrated phosphoric acid, salicylic acid reacts with ethanoic anhydride to form aspirin and ethanoic acid.

Addition of cold water causes the crude product to precipitate as a white solid which is filtered off and recrystallised. The purity of the final product is confirmed by carrying out a melting point determination.

(a) Assuming a 40% yield, calculate the minimum mass of salicylic acid required to form 18.0g of aspirin.

[3]

16ACH3208

	[Turn ov
	[1]
	Write an equation for the reaction of aspirin with excess sodium hydroxide.
(d)	Volumetric analysis of a solution containing aspirin can be carried out by adding an excess of sodium hydroxide solution, warming the mixture to hydrolyse the ester group and then titrating the excess sodium hydroxide with a standard solution of hydrochloric acid.
	[5
(c)	Describe the melting point determination and explain how the result can be used to confirm the purity of the product.
	[4
(6)	Describe the purfication of aspirin by recrystallisation.

Œ

Ð Rewarding L Ð Rewarding L. Rewarding Rewarding L. Rewarding L Ð Ð CCC Rewarding I DD Learning Rewarding L. Rewarding L Ð Cearning COCE Bewarding L Rewarding L Ð Rewarding L Ð

Constructions I. Revealed II. Revealed II.

Rewarding L.

Rewarding L

CCC Bewardina L

Rewarding L

Ð

5 lodine reacts with propanone, in the presence of an acid catalyst, according to the following equation:

$$\mathsf{CH}_3\mathsf{COCH}_3 \ + \ \mathsf{I}_2 \ \overset{\mathsf{H}^+}{\rightarrow} \ \mathsf{CH}_2\mathsf{ICOCH}_3 \ + \ \mathsf{HI}$$

The order of reaction with respect to iodine can be determined by mixing iodine with a large excess of both propanone and hydrochloric acid, starting a stopclock and then monitoring how the concentration of iodine changes with respect to time.

(a) How could you determine the concentration of iodine at regular time intervals using colorimetry?

(b) A graph of iodine concentration against time can be used to show that the reaction is zero order with respect to iodine.

(i) Sketch the graph and label the axes.

[2]

_ [4]

12318

16ACH3210

(ii) How can the graph be used to determine the rate of the reaction? _____ [1] (c) Suggest why a large excess of propanone and hydrochloric acid is used. _____ [1] [Turn over 12318

Ð

- ÐÐ ÐÐ Œ ÐÐ ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>C</u> ÐÐ Œ ÐÐ <u>C</u> normanian DDD a Learning G Ð <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ 0 ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ ÐÐ <u>O</u> ÐÐ <u>C</u>
- 6 A solution containing iron(II) ions was left exposed to the air for several days. Some of the iron(II) ions were oxidised to iron(III) ions.
 (a) The number of moles of iron(II) ions present in the solution can be determined by titrating with acidified manganate(VII) solution.
 5Fe²⁺ + MnO₄⁻ + 8H⁺ → 5Fe³⁺ + Mn²⁺ + 4H₂O
 - (i) Why is no indicator required in this titration?

(ii) Give the colour change at the end point.

(b) A 25.0 cm³ aliquot of the solution, which had been partially oxidised, was transferred into a conical flask. The solution was acidified and then titrated with 0.020 mol dm⁻³ potassium manganate(VII). 18.0 cm³ was required. Calculate the number of moles of iron(II) ions present in this aliquot.

_ [2]

_ [1]

[2]

12318

16ACH3212

- (c) Another portion of the solution, which had been partially oxidised, was treated with an excess of zinc. The unreacted zinc was then removed by filtration and 25.0 cm³ of the filtrate was transferred into a conical flask. The solution was acidified and then titrated with 0.020 mol dm⁻³ potassium manganate(VII) of which 30.0 cm³ was required.
 - (i) Use an equation to explain the purpose of the zinc.

(ii) Calculate the percentage of the iron(II) ions which had been oxidised in this solution.

[2]

[2]

THIS IS THE END OF THE QUESTION PAPER

12318

DE)

16ACH3213

www.xtrapapers.com

g Learning

BLANK PAGE

DO NOT WRITE ON THIS PAGE

12318

16ACH3214

BLANK PAGE

DO NOT WRITE ON THIS PAGE

12318

Œ

Learning Reveating L Proventing L Provent

Rewarding L

Learning Constraints Revearding L Constraints Revearding L

Learning Rewarding L

Learning Rewarding L Dearning Learning Rewarding L Rewarding L Dearning Color Learning

I Learning Proceeding I. Proceedin

Learning Gearning Rewarding L CO Learning Rewarding L Rewarding L

16ACH3215

DO NOT WRITE ON THIS PAGE

For Examiner's use only								
Question Number	Examiner Mark	Remark						
1								
2								
3								
4								
5								
6								
Total Marks								

Г

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

250117

16ACH3216

General Information

1 tonne = 10^{6} g 1 metre = 10^{9} nm One mole of any gas at 293 K and a pressure of 1 atmosphere (10^{5} Pa) occupies a volume of 24 dm³ Avogadro Constant = 6.02×10^{23} mol⁻¹ Planck Constant = 6.63×10^{-34} Js Specific Heat Capacity of water = $4.2 \text{ J g}^{-1} \text{ K}^{-1}$ Speed of Light = $3 \times 10^{8} \text{ m s}^{-1}$

Characteristic absorptions in IR spectroscopy

Wavenumber/cm ⁻¹	Bond	Compound
550–850	C–X (X = Cl, Br, I)	Haloalkanes
750–1100	C–C	Alkanes, alkyl groups
1000–1300	C–O	Alcohols, esters, carboxylic acids
1450–1650	C=C	Arenes
1600–1700	C=C	Alkenes
1650–1800	C=O	Carboxylic acids, esters, aldehydes,
		ketones, amides, acyl chlorides
2200–2300	C≡N	Nitriles
2500–3200	O-H	Carboxylic acids
2750–2850	C–H	Aldehydes
2850-3000	C–H	Alkanes, alkyl groups, alkenes, arenes
3200–3600	O-H	Alcohols
3300–3500	N-H	Amines, amides

Proton Chemical Shifts in Nuclear Magnetic Resonance Spectroscopy (relative to TMS)

Chemical Shift	Structure	
0.5–2.0	–C H	Saturated alkanes
0.5–5.5	-0 H	Alcohols
1.0-3.0	-N H	Amines
2.0–3.0	-CO-C H	Ketones
	-N-C H	Amines
	C ₆ H ₅ –C H	Arene (aliphatic on ring)
2.0–4.0	X–C H	X = Cl or Br (3.0–4.0)
		X = I (2.0–3.0)
4.5–6.0	-C=C H	Alkenes
5.5–8.5	RCONH	Amides
6.0-8.0	$-C_6H_5$	Arenes (on ring)
9.0–10.0	–C H O	Aldehydes
10.0–12.0	-COO H	Carboxylic acids

Data Leaflet Including the Periodic Table of the Elements

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations

gce a/as examinations chemistry

These chemical shifts are concentration and temperature dependent and may be outside the ranges indicated above.

© CCEA 2017 COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT 29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG Tel: +44 (0)28 9026 1200 Fax: +44 (0)28 9026 1234 Email: info@ccea.org.uk Web: www.ccea.org.uk

For first teaching from September 2016 For first award of AS Level in Summer 2017 For first award of A Level in Summer 2018 Subject Code: 1110

For the use of candidates taking Advanced Subsidiary and Advanced Level Examinations

Ι	II			THE PERIODIC TABLE OF ELEMENTS Group								III	IV
1	2	3	4	5	б	7	8	9	10	11	12	13	14
1 H Hydrogen 1		_											
7 Li Lithium 3	9 Beryllium 4											11 Boron 5	12 C Carbon 6
23 Na ^{Sodium} 11	24 Mg Magnesium 12											27 Al Aluminium 13	28 Silicon 14
39 K Potassium 19	40 Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 Vanadium 23	52 Chromium 24	55 Manganese 25	56 Fe 26 ^{Iron}	59 Co Cobalt 27	59 Ni 28	64 Cu ^{Copper} 29	65 Zn 30	70 Gallium 31	73 Germanium 32
85	88	89	91	93	96	98 T -	101 D	103	106	108	112	115	119 C
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Nolybdenum	Technetium	Ruthenium	Rhodium	Palladium	AG Silver	Cadmium	Indium 49	SN Tin
133	137	139 *	178	181	184	186	190	192	195	197	201	204	207
Caesium	Barium	La Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Pt Platinum	Gold	Mercury	Thallium	PD Lead
223	226	227	261	262	266	264	277	268	271	272	285		02
Francium	Ra		Rutherfordium	Dubnium	Seaborgium	Bh	HS Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	ו	
01	00	09	104	140	1/1	144	145	150	152	157	150	_ 	165
* 58 – † 90 –	71 Lantl 103 Actii	hanum s nium ser	eries ies	Cerium 58	Praseodymium	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	HO Holmium 67
a b	<pre>a = relati (appr x = atom b = atom</pre>	ve atom ox) nic symbo nic numb	ic mass ol per	232 Th Thorium 90	231 Pa Protactinium 91	238 U ^{Uranium} 92	237 Neptunium 93	242 Pu Plutonium 94	243 Americium 95	247 Curium 96	245 Bk Berkelium 97	251 Californium 98	254 ES Einsteinium 99

VI VII

0

V

