Centre Number

Candidate Number

ADVANCED General Certificate of Education 2019

Chemistry

Assessment Unit A2 3 assessing Further Practical Chemistry **Practical Booklet A**

ACH31

[ACH31] THURSDAY 9 MAY, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all three** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 30.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Periodic Table of Elements (including some data) is provided.

You may not have access to notes, textbooks and other material to assist you. Safety glasses must be worn at all times and care should be taken during the practical examination.

12289.06**R**

08ACH3101

1 You are required to titrate standard sodium thiosulfate solution against the iodine liberated by the reaction of potassium iodate(V) with excess potassium iodide in solution.

You are provided with:

- a solution of potassium iodate(V)
- three 20 cm³ portions of dilute sulfuric acid
- three 1.0g portions of potassium iodide
- 0.10 mol dm⁻³ sodium thiosulfate solution
- starch indicator

You should:

- Step 1. Fill the burette with the 0.10 mol dm^{-3} sodium thiosulfate solution
- Step 2. Use the pipette to transfer 25.0 cm³ of the potassium iodate(V) solution to a conical flask
- Step 3. Add a portion of dilute sulfuric acid to the conical flask
- Step 4. Add a portion of potassium iodide to the conical flask and swirl the flask
- Step 5. Carry out the titration
- (a) (i) Record your results in a table.

12289.06**R**

08ACH3102

[3]

12289.06 R		[Turn over
		[2]
	(iii)	Calculate the percentage uncertainty in your mean titre. Assume the burette has an uncertainty of \pm 0.10 cm 3 .
		[3]
	(ii)	Describe the three changes observed in the conical flask when you carried out Step 5.
		[1]
(b)	(i)	Describe what you observed in the conical flask when you carried out Step 4.
		[2]
	(ii)	Use your results to calculate the mean titre.

Œ

Learning Learning Reveating L 200 Reveating L

Rewarding L. Rewarding L DD Learning Rewarding L Rewarding L Ð Rewarding L. Ð CCC Rewarding L DD Learning DD Learning Rewarding L. Ð CCC Bewardina L DD Learning Rewarding L Rewarding L

) D

Rewarding L

Rewarding L

Rewarding L

Ð

08ACH3103

Œ Rewardin POD g Learning <u>C</u> Œ Hewarding Œ Rewarding g Learning Bewardin Rewardin POD g Learnin Œ Œ Rewardin POD g Learning Œ Pewardin DD <u>C</u> Rewarding g Learning <u>C</u> Rewarding g Learning Ø g Learning Œ Rewardin POD g Learning

Revearcher g Learning g Lear

Rewardin g Learning Rewardin g Learning

g Learning g Learning

Rewarding g.Learning Rewarding g.Learning

<u>C</u>

(a)	De	scribe the appearance of A .	[1]
(b)	We Tra boil one	igh out approximately 10g of A and record the mass to one decimal place nsfer A to a boiling tube. Push a plug of mineral wool into the top of the ling tube. Find the mass of the boiling tube and its contents and record it to e decimal place.	D
		A mineral wool	
	Ма	ss of A	
	Ма	ss of boiling tube and its contents	[1]
(c)	Ма (i)	ss of boiling tube and its contents Heat A in the boiling tube until there is no further change in its appearance stating two observations.	[1] ce,
(c)	Ма (i)	ss of boiling tube and its contents Heat A in the boiling tube until there is no further change in its appearance stating two observations.	[1] ce, [2]
(c)	Ма (i) (ii)	ss of boiling tube and its contents Heat A in the boiling tube until there is no further change in its appearance stating two observations. Allow the boiling tube to cool. Record the mass of the boiling tube and its contents to one decimal place and calculate the loss in mass.	[1] ce, [2]
(c)	Ма (i) (ii)	ss of boiling tube and its contents Heat A in the boiling tube until there is no further change in its appearand stating two observations. Allow the boiling tube to cool. Record the mass of the boiling tube and its contents to one decimal place and calculate the loss in mass.	[1] ce, [2]
(c)	Ма (i) (ii)	ss of boiling tube and its contents Heat A in the boiling tube until there is no further change in its appearand stating two observations. Allow the boiling tube to cool. Record the mass of the boiling tube and its contents to one decimal place and calculate the loss in mass.	[1] ce, [2]

08ACH3104

(d) (i) Remove the plug of mineral wool from the boiling tube using tweezers. Add two spatula measures of its contents to 25 cm³ of 2M sulfuric acid in a beaker. Heat the beaker and its contents on a tripod and gauze without boiling and stir gently until there is no further change. State two observations. Keep the beaker and its contents for use in (d) (ii). ____ [2] (ii) Add two spatula measures of A to the contents of the beaker used in (d) (i). State two observations. [2] (e) (i) Pour approximately 4 cm^3 of the solution, obtained in (d) (ii), into a test tube. Add an equal volume of 2M sodium hydroxide solution. State one observation. Keep the contents of the test tube for use in (e) (ii). [1] (ii) Add 6 cm³ of concentrated hydrochloric acid to the test tube. Stopper and shake the test tube. State two observations. [2] [Turn over 12289.06**R**

Rewarding L

Rewarding L

PO I Learning OCE Rewarding L

e Learning COC Rewarding L

Hewarding L D Learning C Rewarding L

Hewarding L D Learning C Rewarding L

Rewarding L.

Learning COC Rewarding L

Learning Rewarding L

Rewarding L PO Learning Rewarding L

e Learning CEE Rewarding L

Rewarding L

Hewarding L

PO Learning OG Rewarding L

Rewarding L

Rewarding L

Rewarding L

tearning COE Rewarding L

Œ

DE)

08ACH3105

- **3** You are provided with cinnamic acid and propanone.
 - (a) Add approximately 12 cm³ of ethanol to the sample of cinnamic acid in a boiling tube. Shake the boiling tube until the cinnamic acid dissolves. Pour half of the solution into a second boiling tube and keep it for use in (a) (iii).
 - (i) Add one drop of the solution from the first boiling tube onto damp Universal Indicator paper and record the pH value.
 - [1]
 - (ii) Into the first boiling tube, containing the solution of cinnamic acid in ethanol, add an equal volume of deionised water followed by approximately 6 cm³ of bromine water. Stopper and shake the boiling tube. State two observations.
 - [2]
 - (iii) Into the second boiling tube, containing the solution of cinnamic acid in ethanol, add an equal volume of deionised water followed by a spatula measure of sodium hydrogencarbonate. State **two** observations.

_ [2]

(b) Place a watch glass on a heatproof mat and add several drops of propanone to the watch glass. Carefully touch the liquid with a lighted splint. Using a test tube holder, place the bottom half of an empty test tube in the flame. State **two** observations.

___ [2]

12289.06**R**

08ACH3106

THIS IS THE END OF THE QUESTION PAPER

12289.06**R**

Œ

DO Learning COS Rewarding L

CCC Rewarding L Rewarding Rewarding L. Rewarding L Ð Œ Ð CCC Rewarding I DD Learning Rewarding L DE Learning CCC Rewarding L Rewarding L DD Learning

Cearning COCE Bewarding L

A Learning Rewarding L DO Rewarding L DO Rewarding L DO Rewarding L

Control of the second of the s

PO Learning CCS Rewarding L

Rewarding L Rewarding L D Learning C Rewarding L

Ð

08ACH3107

DO NOT WRITE ON THIS PAGE

For Examiner's use only						
Question Number	Marks					
1						
2						
3						
Total Marks						

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

248488

08ACH3108

ADVANCED General Certificate of Education 2019

Chemistry

Assessment Unit A2 3

assessing

Further Practical Chemistry **Practical Booklet A**

[ACH31]

THURSDAY 9 MAY, MORNING

APPARATUS AND MATERIALS LIST

Advice for centres

- All chemicals used should be at least laboratory reagent specification and labelled with appropriate safety symbols, e.g. irritant.
- For centres running multiple sessions candidates for the later session should be supplied with clean, dry glassware. If it is not feasible, then glassware from the first session should be thoroughly washed, rinsed with deionised water and allowed to drain.
- Ensure all chemicals are in date otherwise expected observations may not be seen.
- It is the responsibility of the centre to be cognisant of all health and safety issues and to carry out a thorough risk assessment. Up to date information can be obtained at www.cleapss.org.uk

Practical Examination

Each candidate must be supplied with safety goggles or glasses.

Question No. 1

Each candidate must be supplied with:

- a 50 cm³ burette of at least B quality
- a funnel for filling the burette
- a retort stand and burette clamp
- access to beakers
- a 25 cm³ pipette of at least class B quality
- a safety pipette filler
- 3 × 250 cm³ conical flasks
- a white tile or white paper
- a wash bottle containing deionised water
- 150 cm³ of 0.10 mol dm⁻³ sodium thiosulfate solution labelled 0.10 mol dm⁻³ sodium thiosulfate solution.
- 150 cm³ of potassium iodate(V) solution of concentration 3.36 g dm⁻³ labelled **potassium iodate(V) solution** and **oxidising**.
- 3 × 20 cm³ portions of sulfuric acid solution labelled Q1 dilute sulfuric acid and irritant. This solution should be of approximate concentration 1 M. (Centres may choose to leave out a reagent bottle containing approximately 100 cm³ of 1 M sulfuric acid labelled dilute sulfuric acid and irritant and a 25 cm³ measuring cylinder and give candidates adequate instruction in this part.)
- 3 × 1 g portions of solid potassium iodide labelled **potassium iodide**.
- a dropper bottle containing starch solution labelled **starch indicator**.

Question No. 2

- Copper(II) carbonate (12g) labelled A and irritant
- a plastic weighing boat or filter paper
- a small spatula, e.g. Nuffield Raised Centre Spatula (or similar size)
- 2 × boiling tubes
- 1 × test tube
- test tube/boiling tube rack
- 1 × stirring rod
- stopper to fit test tube
- dry mineral wool
- access to a balance reading to at least 1 d.p.
- test tube (boiling tube) holder
- tweezers
- bunsen burner
- tripod, gauze and heatproof mat
- 10 cm³ measuring cylinder or access to plastic graduated dropping pipette
- 25 cm³ measuring cylinder
- 100 cm³ beaker
- 25–50 cm³ of 2M sulfuric acid labelled **Q2 2M sulfuric acid** and corrosive
- 10 cm³ of 2M sodium hydroxide labelled Q2 2M sodium hydroxide and corrosive
- 10 cm³ of concentrated hydrochloric acid labelled as Q2 concentrated hydrochloric acid and corrosive. This should be stored and used in a fume cupboard with access to a 10 cm³ measuring cylinder
- access to a lighter or matches

Question No. 3

- 0.6g of cinnamic acid labelled cinnamic acid and irritant
- access to reagent bottle of ethanol labelled ethanol and highly flammable
- access to Universal Indicator paper (Johnston Test Papers pH1 to pH14)
- a small spatula, e.g. Nuffield Raised Centre Spatula (or similar size)
- 2 × boiling tubes
- test tube/boiling tube rack
- access to 0.2 M bromine water in a fume cupboard (yellow/orange in colour) labelled bromine water
- a 25 cm³ measuring cylinder
- 2 × watch glasses
- access to plastic graduated dropping pipettes
- a wash bottle containing deionised water
- a wooden splint
- a test tube
- a test tube holder
- stopper to fit a boiling tube
- a heatproof mat
- 1 g of sodium hydrogencarbonate labelled sodium hydrogencarbonate
- approximately 5 cm³ of propanone labelled **propanone** and **flammable**
- access to a lighter or matches

ADVANCED General Certificate of Education 2019

Chemistry

Assessment Unit A2 3

Practical Assessment

Practical Booklet A

[ACH31]

THURSDAY 9 MAY

Confidential Instructions to the Supervisor of the Practical Examination

INSTRUCTIONS TO THE SUPERVISOR OF THE PRACTICAL EXAMINATION

General

- 1. The instructions contained in this document are for the use of the Supervisor **and are strictly confidential**. Under no circumstances may information concerning apparatus or materials be given before the examination to a candidate or other unauthorised person.
- 2. In a centre with a large number of candidates it may be necessary for two or more examination sessions to be organised. It is the responsibility of the schools to ensure that there should be no contact between candidates taking each session.
- **3.** A suitable laboratory must be reserved for the examination and kept locked throughout the period of preparation. Unauthorised persons not involved in the preparation for the examination must not be allowed to enter. Candidates must not be admitted until the specified time for commencement of the examination.
- **4.** The Supervisor must ensure that the solutions provided for the candidates are of the nature and concentrations specified in the Apparatus and Materials List.
- 5. The Supervisor is to be granted access to the Teacher's Copy of Practical Booklet A on Friday 3 May 2019. The Supervisor is asked to check, at the earliest opportunity, that the experiments and tests in the question paper may be completed satisfactorily using the apparatus, materials and solutions that have been assembled. This question paper must then be returned to safe custody at the earliest possible moment after the Supervisor has ensured that all is in order. No access to the question paper should be allowed before Friday 3 May 2019.
- 6. Centres may need to carry out multiple sessions to accommodate all their candidates sitting Practical Booklet A in a laboratory. Supervision must take place from 30 minutes after the scheduled starting time of the examination, as set out in the timetable, until the time when the candidate(s) begin(s) their examination(s). This is in order to ensure that there is no contact with other candidates. The centre must appoint a member of staff from the centre to supervise the candidate(s) at all times while he/she is on the premises.
- 7. All apparatus should be checked before the examination, and there should be an adequate supply of spare apparatus in case of breakages. The Apparatus and Materials List should be regarded as a minimum and there is no objection to candidates being supplied with more than the minimum amount of apparatus and materials.
- 8. Candidates may not use text books and laboratory notes for reference during the examination, and must be informed of this beforehand.

- 9. Clear instructions must be given by the Supervisor to all candidates at the beginning of the examination concerning appropriate safety procedures and precautions. Supervisors are also advised to remind candidates that all substances in the examination must be treated with caution. Only those tests specified in the question paper should be attempted. Candidates must not attempt any additional confirmatory tests. Anything spilled on the skin should be washed off immediately with plenty of water. The use of appropriate eye protection is essential.
- **10.** Supervisors are reminded that they may not assist candidates during the examination. However if, in the opinion of the Supervisor, a candidate is about to do something which may endanger him/herself or others, the Supervisor should intervene. A full written report must be sent to CCEA at once.
- **11.** Upon request, a candidate may be given additional quantities of materials (answer paper, reagents and unknowns) without penalty. No notification need be sent to CCEA.
- **12.** The examination room must be cleared of candidates immediately after the examination.
- **13.** No materials will be supplied by CCEA.
- **14.** All JCQ procedures for conducting examinations should be followed for this practical examination including displaying JCQ posters with examination information in the laboratory and removal of mobile phones. Posters should be available from your Examinations Officer.

Northern Ireland Council for the Curriculum, Examinations and Assessment

General Certificate of Education

Advanced

Chemistry

Practical Booklet A

[ACH31]

Thursday 9 May 2019

This report must be completed by the Supervisor during the examination. The complete report should include all candidates taking this Practical Examination. This Supervisor's Report should be copied and attached to Each Advice Note bundle and returned to CCEA in the normal way.

Comments:

Supanvigar'a Signa	turo	Data	
	nure		

Centre Number

71

Candidate Number

General Information

1 tonne = 10^{6} g 1 metre = 10^{9} nm One mole of any gas at 293 K and a pressure of 1 atmosphere (10^{5} Pa) occupies a volume of 24 dm³ Avogadro Constant = 6.02×10^{23} mol⁻¹ Planck Constant = 6.63×10^{-34} Js Specific Heat Capacity of water = $4.2 \text{ J g}^{-1} \text{ K}^{-1}$ Speed of Light = $3 \times 10^{8} \text{ m s}^{-1}$

Characteristic absorptions in IR spectroscopy

Wavenumber/cm ⁻¹	Bond	Compound
550–850	C–X (X = Cl, Br, I)	Haloalkanes
750–1100	C–C	Alkanes, alkyl groups
1000–1300	C–O	Alcohols, esters, carboxylic acids
1450–1650	C=C	Arenes
1600–1700	C=C	Alkenes
1650–1800	C=O	Carboxylic acids, esters, aldehydes,
		ketones, amides, acyl chlorides
2200–2300	C≡N	Nitriles
2500–3200	O-H	Carboxylic acids
2750–2850	C–H	Aldehydes
2850–3000	C–H	Alkanes, alkyl groups, alkenes, arenes
3200–3600	O-H	Alcohols
3300–3500	N-H	Amines, amides

Proton Chemical Shifts in Nuclear Magnetic Resonance Spectroscopy (relative to TMS)

Chemical Shift	Structure	
0.5–2.0	–C H	Saturated alkanes
0.5–5.5	-0 H	Alcohols
1.0-3.0	-N H	Amines
2.0–3.0	-CO-C H	Ketones
	-N-C H	Amines
	C ₆ H ₅ –C H	Arene (aliphatic on ring)
2.0–4.0	X–C H	X = Cl or Br (3.0–4.0)
		X = I (2.0–3.0)
4.5–6.0	-C=C H	Alkenes
5.5–8.5	RCONH	Amides
6.0-8.0	$-C_6H_5$	Arenes (on ring)
9.0–10.0	C H O	Aldehydes
10.0–12.0	-COO H	Carboxylic acids

Data Leaflet Including the Periodic Table of the Elements

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations

gce a/as examinations chemistry

These chemical shifts are concentration and temperature dependent and may be outside the ranges indicated above.

© CCEA 2017 COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT 29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG Tel: +44 (0)28 9026 1200 Fax: +44 (0)28 9026 1234 Email: info@ccea.org.uk Web: www.ccea.org.uk

For first teaching from September 2016 For first award of AS Level in Summer 2017 For first award of A Level in Summer 2018 Subject Code: 1110

For the use of candidates taking Advanced Subsidiary and Advanced Level Examinations

Ι	II	THE PERIODIC TABLE OF ELEMENTS Group									III	IV	
1	2	3	4	5	б	7	8	9	10	11	12	13	14
1 H Hydrogen 1		_											
7 Lithium 3	9 Beryllium 4											11 Boron 5	12 C Carbon 6
23 Na ^{Sodium} 11	24 Mg Magnesium 12											27 Al Aluminium 13	28 Silicon 14
39 K Potassium 19	40 Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 Vanadium 23	52 Chromium 24	55 Manganese 25	56 Fe 26 ^{Iron}	59 Co Cobalt 27	59 Ni 28	64 Cu ^{Copper} 29	65 Zn 30	70 Gallium 31	73 Germanium 32
85	88	89	91	93	96	98 T -	101 D	103	106	108	112	115	119 C
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Nolybdenum	Technetium	Ruthenium	Rhodium	Palladium	AG Silver	Cadmium	Indium 49	SN ^{Tin}
133	137	139 *	178	181	184	186	190	192	195	197	201	204	207
Caesium	Barium	La Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Pt Platinum	Gold	Mercury	Thallium	PD Lead
223	226	227	261	262	266	264	277	268	271	272	285		02
Francium	Ra Radium		Rutherfordium	Dubnium	Seaborgium	Bh	HS Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	ו	
01	00	09	104	140	1/1	144	145	150	152	157	150	_ 	165
* 58 – † 90 –	71 Lantl 103 Actii	hanum s nium ser	eries ies	Cerium 58	Praseodymium	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67
a b	<pre>a = relati (appr x = atom b = atom</pre>	ve atom ox) nic symbo nic numb	ic mass ol per	232 Th Thorium 90	231 Pa Protactinium 91	238 U ^{Uranium} 92	237 Neptunium 93	242 Pu Plutonium 94	243 Americium 95	247 Curium 96	245 Bk Berkelium 97	251 Californium 98	254 ES Einsteinium 99

VI VII

0

V

