

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2019

Chemistry

Assessment Unit AS 3

assessing

Module 3: Practical Examination **Practical Booklet B**

[SCH32]

WEDNESDAY 29 MAY, AFTERNOON

MARK SCHEME

Annotation

- 1. Please do all marking in **red** ink.
- All scripts should be checked for mathematical errors. Please adopt a system of one tick (✓) equals 1 mark, e.g. if you have awarded 4 marks for part of a question then 4 ticks (✓) should be on this candidate's answer.
- 3. The total mark for each question should be recorded in a circle placed opposite the question number in the teacher mark column.
- 4. As candidates have access to scripts please do not write any inappropriate comments on their scripts.

General points

- All calculations are marked according to the number of errors made.
- Errors can be carried through. If the wrong calculation is carried out then the incorrect answer can be carried through. One mistake at the start of a question does not always mean that all marks are lost.
- Listing is when more than one answer is given for a question that only requires one answer, e.g. the precipitate from a chloride with silver nitrate is a white solid; if the candidate states a white or a cream solid, one answer is correct and one answer is wrong. Hence they cancel out.
- Although names might be in the mark scheme it is generally accepted that formulae can replace them. Formulae and names are often interchangeable in chemistry.
- The marking of colours is defined in the 'CCEA GCE Chemistry Acceptable Colours' document.

MARKING GUIDELINES

Interpretation of the Mark Scheme

• Carry error through

This is where mistakes/wrong answers are penalised when made, but if carried into further steps of the question, then no further penalty is applied. This pertains to calculations and observational/ deduction exercises. Please annotate candidates' answers by writing the letters c.e.t. on the appropriate place in the candidates' answers.

Oblique/forward slash

This indicates an acceptable alternative answer(s).

Brackets

Where an answer is given in the mark scheme and is followed by a word/words in brackets, this indicates that the information within the brackets is non-essential for awarding the mark(s).

1	(a)	(i)	effervescence/bubbling/fizzing	[1]	AVAILABLE MARKS
		(ii)	oxidation number of C in charcoal increased from 0 to +2 in carb monoxide/oxidation number of C in CO_2 reduced from +4 to +2 [reducing agent is oxidised [1]	ion [1] [2]	
		(iii)	more particles with energy greater/equal to E _{act} [1] more frequent/successful collisions [1]	[2]	
		(iv)	incomplete reduction of carbon dioxide/charcoal not heated enouced carbon dioxide passed through too quickly (soon)	ugh/ [1]	
		(v)	$CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$	[1]	
		(vi)	add dilute acid [1] bubble gas produced through limewater [1] turns milky [1]	[3]	
	(b)	100 RFN mole	kg of $Fe_2O_3 = 100,000 g$ A of $Fe_2O_3 = 160$ es of $Fe_2O_3 = 625$		
		56 k RMI mole	ag of CO = 56,000 g M of CO = 28 es of CO = 2000		
		Fe ₂	O ₃ is limiting factor		
		mol mas	es of Fe = 1250 ss of Fe = 1250 × 56 = 70,000 g = 70 kg (error [-1])	[3]	
	(c)	(i)	(high temperature) decreases yield	[1]	
		(ii)	(high pressure) increases yield	[1]	
	(d)	(i)	to ensure the even distribution of heat	[1]	
		(ii)	surround apparatus with screen to reduce draughts [1] place a lid on the copper can [1]	[2]	
		(iii)	% error = $\frac{2 \times 0.5}{70.5} \times 100 = 1.4\% = 1\%$	[2]	
		(iv)	mass of methanol = 20.33 – 18.92 = 1.41g moles of methanol = 1.41/32 = 141/3200 (0.0440625)		
			$q = (-)100 \times 4.2 \times 70.5 = (-)29610 J$ (29.61 kJ)		
			$\Delta H = -29610/0.044 = -672954.5 \text{ J (mol}^{-1})$ = -673 kJ (mol}^{-1}) = -700 kJ (mol^{-1}) (error [-1])	[3]	
		(v)	carbon [1] incomplete combustion [1]	[2]	
		(vi)	more (bonds) broken/formed	[1]	26

2 (a) ((i)	H ₂ SO ₄ +	NaCl	\rightarrow Na	HSO ₄ +	HCI	[1]	AVAILABLE MARKS
	((ii)	MnO ₂ +	4HCI	\rightarrow Cl ₂	+ MnCl	₂ + 2H ₂ O	[2]	
	((iii)	dissolves	in the wat	[1]				
	((iv)	heavier th	an air	[1]				
	((v)	bleaches (error [–1]	damp Uni)	[2]				
(b) ((i)	a solution	of chlorin	[1]				
	((ii)	add silver white prec		[2]				
(c) ((i)	two layers	[1]					
	((ii)	the botton	n layer tur					
	 (ii) the bottom layer turns colouriess or the upper layer turns (pale) green (iii) pale green colour disappears 								
		()			loappour			[1]	
	((IV)					[1]		
(d) ((i)	Mass	C:	H:	CI			
(u) ((1)	R.A.M	32.2 12	4.5	35.5			
			Moles	2.68	4.5	1.78			
			Ratio	1.50	2.52	1.00			
	3 5 2								
	Empirical formula = $C_3H_5CI_2$								
			(error [–1])				[3]		
	(ii) mass of hexane = $9.75g$ RMM = 86 moles of hexane = $9.75/86$ = 0.1134 moles of X obtained = 0.01134 RFM of X = $2.54/0.01134 = 223.986$								
			(error [–1])			[3]	
	((iii)	C ₆ H ₁₀ Cl ₄					[1]	
	((iv)	substitutio	substitution can replace any H atom/multiple substitution can occur					22

