

ADVANCED General Certificate of Education 2019

# Chemistry

# Assessment Unit A2 1 assessing Further Physical and Organic Chemistry

# [ACH12]

**TUESDAY 4 JUNE, AFTERNOON** 

# MARK SCHEME

#### **General Marking Instructions**

#### Introduction

Mark schemes are published to assist teachers and students in their preparation for examinations. Through the mark schemes, teachers and students will be able to see what the examiners are looking for in response to questions and exactly where the marks have been awarded. The publishing of the mark schemes may help to show that examiners are not concerned about finding out what a student does not know but rather, with rewarding students for what they do know.

#### The purpose of mark schemes

Examination papers are set and revised by teams of examiners and revisers appointed by the Council. The teams of examiners and revisers include experienced teachers who are familiar with the level and standards expected of students in schools and colleges.

The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to review the questions and mark schemes commenting on a large range of issues about which they must be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues of differentiation and positive achievement can be addressed right from the start. Mark schemes, therefore, are regarded as part of an integral process which begins with the setting of questions and ends with the marking of the examination.

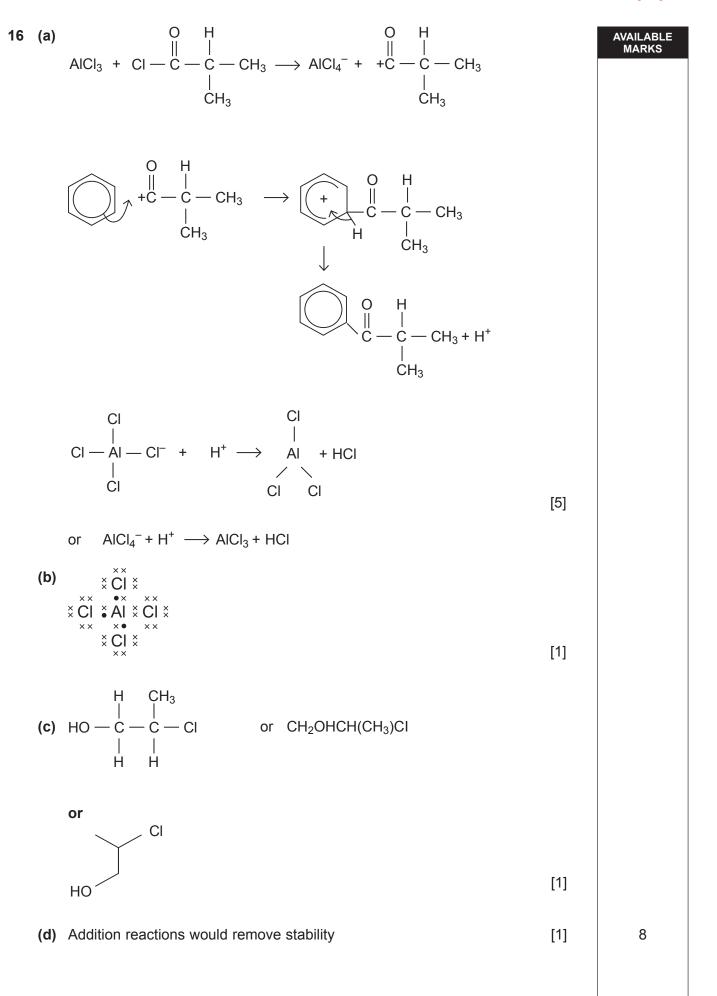
The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all the markers are following exactly the same instructions and making the same judgements in so far as this is possible. Before marking begins, a standardising meeting is held where all the markers are briefed using the mark scheme and samples of the students' work in the form of scripts. Consideration is also given at this stage to any comments on the operational papers received from teachers and their organisations. During this meeting, and up to and including the end of the marking, there is provision for amendments to be made to the mark scheme. The document published represents the final form of the mark scheme.

It is important to recognise that in some cases there may well be other correct responses which are equally acceptable to those published: the mark scheme can only cover those responses which emerged in the examination. There may also be instances where certain judgements may have to be left to the experience of the examiner, for example where there is no absolute correct response – all teachers will be familiar with making such judgements.

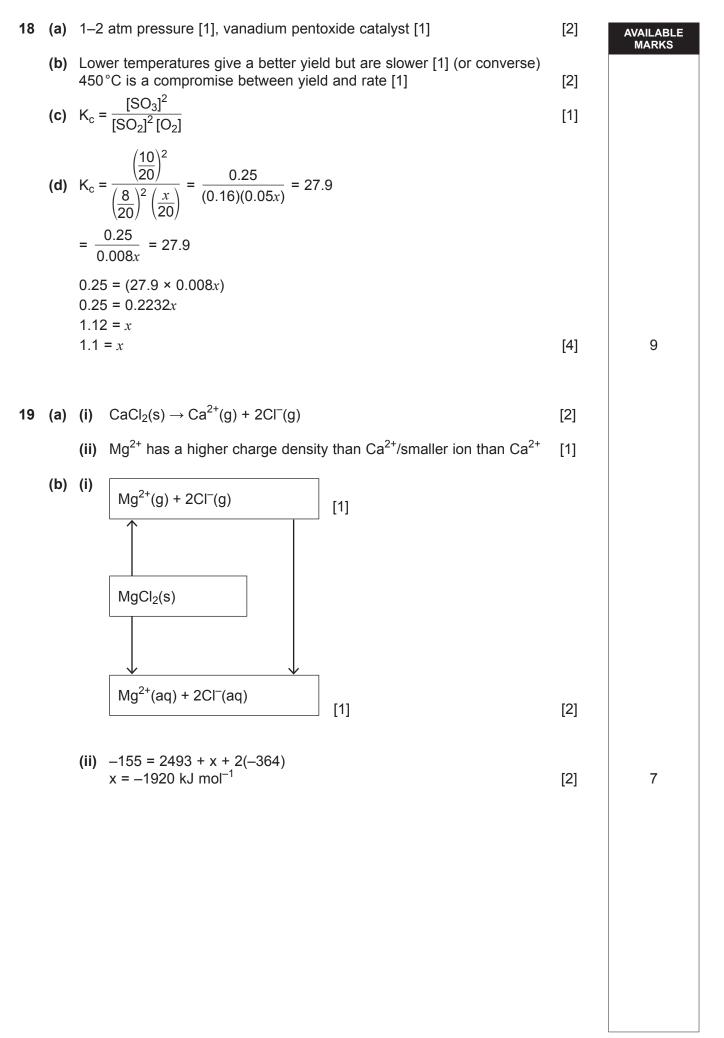
|     | Section A                    | AVAILABLE<br>MARKS |
|-----|------------------------------|--------------------|
| 1   | C                            | MARNS              |
| 2   | C                            |                    |
| 3   | В                            |                    |
| 4   | В                            |                    |
| 5   | C                            |                    |
| 6   | C                            |                    |
| 7   | D                            |                    |
| 8   | В                            |                    |
| 9   | В                            |                    |
| 10  | C                            |                    |
| [1] | for each correct answer [10] | 10                 |
|     | Section A                    | 10                 |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |
|     |                              |                    |

AVAILABLE MARKS

7


Section B

(a) A measure of disorder [1]  
(b) 
$$(131 + 102.5) - (189) = 233.5 - 189 = 44.5 J K^{-1} (mol^{-1})$$
 [1]  
(c) The entropy change would be larger [1] as liquid water has lower entropy value than gaseous water [1] (liquid water is less disordered than gaseous water) [2]  
(d) (A reaction for which)  $\Delta G < 0$  [1]  
(e)  $0 = \Delta H - \frac{T\Delta S}{1000}$   
 $\Delta H = \frac{5440 (44.5)}{(1000)} = \frac{242.080}{1000}$   
 $= 242.08 kJ (mol^{-1})$  [2]  
(a) (i) 1.3,5-trinitrobenzene [1]  
(ii) • Take sample from the reaction mixture at different times/intervals  
• Quench reaction with ice  
• Titrate against standard sodium hydroxide solution with phenolphthalein/methyl orange indicater  
• Plot a graph of concentration against time  
• Take tangents and measure the gradient  
• Plot a graph of rate against concentration. Determine order from the shape of this graph.  
**Eand** Response Mark  
• A Candidates must use appropriate specialist terms using a minimum of 5 points of indicative content.  
They must use good spelling, punctuation and grammar and the form and style are of an excellent standard.  
• B Candidates must use appropriate specialist terms using a minimum of 3 points of indicative content.  
They must use good spelling, punctuation and grammar and the form and style are of a nexcellent standard.  
• C Candidates must use appropriate specialist terms using a minimum of 3 points of indicative content.  
They must use addition of 1 point of indicative indicative content.  
They we limited correct spelling, punctuation and grammar and the form and style are of a basic standard.  
• Response not worthy of credit. [0]


11

12

|    | (b) | (i) First order                                                                                                                                                              | [1] | AVAILABLE<br>MARKS |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|
|    |     | (ii) Rate constant = $2.40 \times 10^{-6}/2.50 \times 10^{-4}$<br>= $2.40/2.50 \times 10^{-2}$                                                                               |     |                    |
|    |     | = $0.960 \times 10^{-2}$<br>= 0.00960 min <sup>-1</sup> /9.60 × $10^{-3}$ min <sup>-1</sup>                                                                                  | [2] |                    |
|    |     | (iii) Greater proportion of successful collisions as greater fraction of                                                                                                     |     |                    |
|    |     | molecules will have E > E <sub>A</sub> (increases the constant in the rate equation)                                                                                         | [1] | 11                 |
| 40 | (-) |                                                                                                                                                                              |     |                    |
| 13 | (a) |                                                                                                                                                                              |     |                    |
|    |     |                                                                                                                                                                              |     |                    |
|    |     |                                                                                                                                                                              | [1] |                    |
|    | (b) | Molecules which exist as non-superimposable mirror images.                                                                                                                   | [1] |                    |
|    | (c) | The receptor sites are stereospecific                                                                                                                                        | [1] |                    |
|    | (d) | 50:50 mixture of two optical isomers [1]                                                                                                                                     |     |                    |
|    |     | The effects of each isomer (being equal and opposite) cancel each other out [1]                                                                                              |     | 5                  |
| 14 | (a) | Advantage – more precise/quantitative value/easier to discern pH                                                                                                             | [1] |                    |
|    |     | <ul> <li>b) Vertical section passes through the (pH) range in which both indicators change colour</li> <li>c) Neutral as it is the salt of a strong acid and base</li> </ul> |     |                    |
|    | (b) |                                                                                                                                                                              |     |                    |
|    | (c) |                                                                                                                                                                              |     | 4                  |
| 15 | (a) | CH <sub>2</sub> OH CH <sub>2</sub> OCOC <sub>15</sub> H <sub>31</sub>                                                                                                        |     |                    |
|    |     | $  \\ CHOH + 3C_{15}H_{31}COOH \implies CHOCOC_{15}H_{31} + 3H_2O$                                                                                                           |     |                    |
|    |     | $ \begin{vmatrix} &   \\ CH_2OH & CH_2OCOC_{15}H_{31} \end{vmatrix} $                                                                                                        | [2] |                    |
|    | (b) | Saturated [1] C <sub>15</sub> H <sub>31</sub> is C <sub>n</sub> H <sub>2n+1</sub> [1]<br>Second mark dependent on the first                                                  | [2] |                    |
|    | (c) | A reaction where the alkyl group of an ester is exchanged with the alkyl group of an alcohol/carboxylic acid                                                                 | [2] |                    |
|    | (d) | CH <sub>2</sub> OCOC <sub>15</sub> H <sub>31</sub> CH <sub>2</sub> OH                                                                                                        |     |                    |
|    |     | $\overset{ }{C}HOCOC_{15}H_{31} + 3CH_{3}OH \rightleftharpoons \overset{ }{C}HOH + 3C_{15}H_{31}COOCH_{3}$                                                                   |     |                    |
|    |     | $CH_2OCOC_{15}H_{31}$ $CH_2OH$                                                                                                                                               | [1] |                    |
|    | (e) | C <sub>15</sub> H <sub>31</sub> COOCH <sub>3</sub>                                                                                                                           | [1] | 8                  |
|    |     | _                                                                                                                                                                            |     |                    |



| 17 | (a) | (i)     | $K_w = [H^+][OH^-]$<br>or $K_w = [H^+(aq)] [OH^-(aq)]$<br>or $K_w = [H_3O^+][OH^-]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | AVAILABLE<br>MARKS |
|----|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|
|    |     |         | or $K_w = [H_3O^+(aq)] [OH^-(aq)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [1] |                    |
|    |     | (ii)    | [H <sub>2</sub> O] is effectively constant/[H <sub>2</sub> O] is incorporated into the value of $K_w$ i.e. $K_w = [H_3O^+ (aq)] [OH^- (aq)] [H_2O]$                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1] |                    |
|    | (b) | (i)     | $9.3 \times 10^{-14} = [H^{+}(aq)]^{2}$<br>[H <sup>+</sup> (aq)] = 3.05 × 10 <sup>-7</sup><br>pH = 6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [2] |                    |
|    |     | <i></i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [2] |                    |
|    |     | (ii)    | Neutral [1] as $H^+/H_3O^+$ and $OH^-$ form in equal amounts [1]<br>Second mark is dependent on the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [2] |                    |
|    |     | (iii)   | Ba(OH) <sub>2</sub> RFM = 137 + 2 × (16 + 1) = 171<br>256.5/171 = 1.497 = 1.5 mol<br>moles = 1.5<br>[OH <sup>-</sup> ] = 2 × 1.5/0.5 = 6<br>[H <sup>+</sup> (aq)][OH <sup>-</sup> (aq)] = $9.3 \times 10^{-14}$<br>[H <sup>+</sup> (aq)] × 6 = $9.3 \times 10^{-14}$<br>[H <sup>+</sup> (aq)] = $9.3 \times 10^{-14}$ /6 = $1.55 \times 10^{-14}$<br>pH = 13.81                                                                                                                                                                                                                                 | [4] |                    |
|    | (c) | (i)     | $\begin{array}{l} CH_3COOH + NaOH \to CH_3COONa + H_2O \\ \text{moles of acid } \frac{25.0}{1000} \times 0.18 = 0.0045 \\ \text{moles of alkali } \frac{10.0}{1000} \times 0.12 = 0.0012 \\ \text{excess acid} = 0.0033 \text{ moles} \\ \text{moles of salt} = 0.0012 \text{ moles} \\ K_a = 10^{-4.76} = 1.74 \times 10^{-5} \text{ mol dm}^{-3} \\ K_a = \frac{[H^+] \text{ [salt]}}{[\text{acid]}}  [H^+] = \frac{K_a \text{ [acid]}}{[\text{salt]}} \\ [H^+] = \frac{(1.74 \times 10^{-5})(0.0033)}{(0.0012)} \\ [H^+] = 4.78 \times 10^{-5} \text{ mol dm}^{-3} \\ pH = 4.32 \end{array}$ | [4] |                    |
|    |     | (ii)    | $CH_3COO^- + H^+ \iff CH_3COOH [1]$<br>$H^+$ removed by salt, $[H^+(aq)]$ remains constant, pH unchanged [1]<br>Second mark is dependent on the first                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2] | 16                 |
|    |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                    |



| 21 | (a) | $\label{eq:CH3} \begin{array}{l} CH_3COCI + H_2O \rightarrow CH_3COOH + HCI \\ \\ \mbox{Hold over a glass rod which has been dipped in concentrated ammonia solution [1] white smoke [1] \end{array}$ |                                                                                                                                                                                                                 |           | AVAILABLE<br>MARKS |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|
|    | (b) |                                                                                                                                                                                                       |                                                                                                                                                                                                                 |           |                    |
|    | (c) | (i) $(CH_2OH)_2 + 2CH_3COCI \rightarrow (CH_2OOCCH_3)_2 + 2HCI$                                                                                                                                       |                                                                                                                                                                                                                 | [2]       |                    |
|    |     | (<br>                                                                                                                                                                                                 | Moles ethane-1,2-diol = $31/62 = 0.5$<br>$(CH_2OOCCH_3)_2 = (C_3H_5O_2)_2 = C_6H_{10}O_4$<br>$M_r = 72 + 10 + 64 = 146$<br>Theoretical yield = $0.5 \times 146 = 73g$<br>% yield = 49/73 × 100 = 67.1%<br>= 67% | [3]       |                    |
|    | (d) | No catalyst needed [1]<br>Goes to completion/higher yield [1]<br>Less purification [1]                                                                                                                |                                                                                                                                                                                                                 |           |                    |
|    | (e) | Phosphorus(V) chloride, $PCI_5$ /phosphorus(III) chloride, $PCI_3$ / thionyl chloride, $SOCI_2$                                                                                                       |                                                                                                                                                                                                                 | [2]       | 13                 |
|    |     |                                                                                                                                                                                                       |                                                                                                                                                                                                                 | Section B | 100                |
|    |     |                                                                                                                                                                                                       |                                                                                                                                                                                                                 | Total     | 110                |
|    |     |                                                                                                                                                                                                       |                                                                                                                                                                                                                 |           |                    |