

ADVANCED General Certificate of Education 2019

Chemistry

Assessment Unit A2 3

assessing

Further Practical Chemistry Practical Booklet B (Theory)

[ACH32]

WEDNESDAY 19 JUNE, MORNING

3	(a)	(i)	Aldehyde [1]		AVAILABLE
			The formation of the orange solid suggests that A is either an aldehyd or ketone/contains a carbonyl group [1] and the formation of the silve mirror means it is not a ketone [1]	le r [3]	MARKS
		(ii)	Propanal and CH ₃ CH ₂ CHO ⁺	[1]	
	(b)	(i)	Carboxylic acid [1]		
	(0)	(1)	The vigorous reaction with phosphorus pentachloride suggests that B	2	
			contains an –OH group [1], the effervescence with sodium carbonate suggests that B is a carboxylic acid/acidic [1]	[3]	
		(ii)	$CH_3CH_2COO(H)$ [1]		
			shift should be in the range 10.0–12.0 ppm [1] Second mark dependent on the first	[2]	
		(iii)	CH ₃ triplet – two hydrogens on the adjacent carbon [1] CH ₂ quartet – three hydrogens on the adjacent carbon [1]	[2]	11
4	(a)	Eith	er:		
		RMM of aspirin = $(9 \times 12) + (8 \times 1) + (4 \times 16) = 180$ Actual yield of aspirin = $18.0/180 = 0.1$ mole Theoretical yield of aspirin = $(0.1/40) \times 100 = 0.25$ mole RMM of salicylic acid = $(7 \times 12) + (6 \times 1) + (3 \times 16) = 138$ Mass of salicylic acid = $0.25 \times 138 = 34.5$ g Error [-1]			
		Or:			
		The RM The RM Mas Erro	Foretical yield of aspirin = $(18.0/40) \times 100 = 45$ g M of aspirin = $(9 \times 12) + (8 \times 1) + (4 \times 16) = 180$ Foretical yield of aspirin = $45/180 = 0.25$ mole M of salicylic acid = $(7 \times 12) + (6 \times 1) + (3 \times 16) = 138$ as of salicylic acid = $0.25 \times 138 = 34.5$ g for [-1]	[3]	
	(b)	Diss etha Filte Allo	solve the crude product in the minimum volume of hot water/methanol/ anol [1] er while hot [1] w filtrate to cool [1]	,	
		Filte	er crystals under suction [1]	[4]	
	(c)	plac plac hea	ce some solid in a capillary tube sealed at one end [1] ce the capillary tube in melting point apparatus/oil bath [1] t slowly [1]		
		reco a sh	ord temperature at which melting begins and ends [1] harp melting point confirms the purity of the aspirin [1]	[5]	
	(d)		$\begin{array}{ccc} OOH & COONa \\ O & CH_3 & OH \\ C & + 2NaOH \rightarrow O & + CH_3 COONa + H_2O \\ \parallel & O \end{array}$	[1]	13

