
Software Systems Development

Unit AS 1:

Introduction to Object Oriented Development

[A1S11]

WEDNESDAY 25 MAY, AFTERNOON

10140.01 F

MARK
SCHEME

ADVANCED SUBSIDIARY (AS)
General Certificate of Education

2016

www.xtrapapers.com

10140.01 F 2 [Turn over

General Marking Instructions

Introduction
Mark schemes are published to assist teachers and students in their preparation for examinations.
Through the mark schemes teachers and students will be able to see what examiners are looking for in
response to questions and exactly where the marks have been awarded. The publishing of the mark
schemes may help to show that examiners are not concerned about finding out what a student does not
know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes
Examination papers are set and revised by teams of examiners and revisers appointed by the Council.
The teams of examiners and revisers include experienced teachers who are familiar with the level and
standards expected of students in schools and colleges.

The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to
review the questions and mark schemes commenting on a large range of issues about which they must
be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues
of differentiation and positive achievement can be addressed right from the start. Mark schemes,
therefore, are regarded as part of an integral process which begins with the setting of questions and
ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all
the markers are following exactly the same instructions and making the same judgements in so far as
this is possible. Before marking begins a standardising meeting is held where all the markers are
briefed using the mark scheme and samples of the students’ work in the form of scripts. Consideration
is also given at this stage to any comments on the operational papers received from teachers and their
organisations. During this meeting, and up to and including the end of the marking, there is provision for
amendments to be made to the mark scheme. What is published represents this final form of the mark
scheme.

It is important to recognise that in some cases there may well be other correct responses which are
equally acceptable to those published: the mark scheme can only cover those responses which
emerged in the examination. There may also be instances where certain judgements may have to
be left to the experience of the examiner, for example, where there is no absolute correct response – all
teachers will be familiar with making such judgements.

www.xtrapapers.com

AVAILABLE
MARKS

10140.01 F 3 [Turn over

1 False [1]
 True [1]
 False [1]
 True [1]
 True [1]
 False [1] 6

2 (a) double discountRate = 0.0, saleAmount = 75.0;
 char rating = 'A';
 if (saleAmount >= 75.0 && rating != 'C')
 discountRate = 0.1; (allow 1)

[1] for initialization of discountRate at start or at else ...
 [1] decision saleAmount [1] && [1] rating
 [1] set discount discountRate 0.1 Allow 10 or 0.9
 Allow !rating = 'C' [5]

 (b) sample answer:
 String sentence = "A cow jumped over the anvil and the fence";
 String word;

 if(sentence.Contains(" the ")) [1]
 {
 sentence = sentence.Replace(" the ", " a "); [1]
 for (int x =0; x<sentence.Length -3; x++) [1] correct loop [1] end index [2]
 {
 if(sentence.Substring(x,3)==" a ") [1] check ‘a’ [1] as a word [2]
 {
 word =sentence.Substring(x+3, 2);

 switch(word[0]) [1]
 {
 case 'a': //
 case 'e': //
 case 'i': //
 case 'o': //
 case 'u': sentence=sentence.Substring(0,x+2) +'n' + sentence.

Substring(x+2); break;

 } [1] for vowel check [1] for ‘n’ [1] for correct index [1] [3]
 }
 }

 Console.Write("\n\n\tChanged sentence "+ sentence);

 }

 else
 Console.Write("\n\n\tNo change to "+ sentence); [1] 16
 (or any relevant answer)

 Any valid alternative
 check " the " 1 mark

replace " the " 1 mark
 check " a " or " the " 1 mark 1 mark as word
 check the consonant 1 mark
 end loop 1 mark

www.xtrapapers.com

10140.01 F 4 [Turn over

AVAILABLE
MARKS

 switch or loop for vowels 1 mark
 check vowel 1 mark
 add n or an 1 mark
 correct index 1 mark
 No change 1 mark

3 (a) Constructor – C# sample

 public Booking(int bookingNo, String clientName, char package, DateTime

bookingDate, int noInParty)
 {
 this.bookingNo = bookingNo;
 this.clientName = clientName;
 this.package = package;
 this.bookingDate = bookingDate;
 this.noInParty = noInParty;
 } ([1] parameters, [1] data type [1] any other correct

 assignment) [3]

 GET / SET c# sample

 public int NoInParty type [1] capital letter [1] [2]
 {
 get { return noInParty; } [1]
 set { noInParty = value; } [1]
 }

 OR GET / SET java example

 public int getNoInParty() [1] alt
 {
 return noInParty; [1] alt
 }
 public void setNoInParty (int noInParty) { [1]alt
 this. noInParty = noInParty [1]alt
 }

 Method calcCost
 public double calcCost() [2]
 ([1] return type, [1] name no parameters)
 {
 double price = 0.0; [2]
 ([1] type, [1] initialisation)
 switch (package) [1]
 {
 case 'A': price = 50.0; break;
 case 'B': price = 75.0; break;
 case 'C': price = 125.0; break;
 case 'D': price = 395.0; break; ([1] any one correct) [1]

 }
 if (noInParty >= 6 && (package == 'C' || package == 'D')) [3]
 ([1] noInParty comparison [1] && brackets, [1]OR package)

www.xtrapapers.com

AVAILABLE
MARKS

10140.01 F 5 [Turn over

 return noInParty * price * 1.15;
 [2]

 ([1] correct calculation [1] surcharge calculation)
 else
 return noInParty * price; [2]
 ([1] return, [1] calculation)
 }
 public double calcDeposit()
 {
 return calcCost()/10; [2]
 ([1] calculation [1] method call)
 }

 public double calcOutstandingCost()
 {
 return calcCost() - calcDeposit();

 [2]
 ([1] calculation [1] method calls)
 }

 (b) (i) instantiation of an object of type Booking [1]
 method call for today’s date from class DateTime [1]

 (ii) Console.Write("\n\n\t Outstanding Cost is {0:.00} " ,
 booking.calcOutstandingCost()); [1] 27

4 (a) (i) data type – alphabetic, numeric, alphanumeric;
 format – A999 letter followed by three digits, email address;
 range – number lying between 2.00 and 15.00;
 presence – surname, forename, address exists;
 compatibility – height/weight;
 dependancy – cost/selling price.
 ([1] each any three) [3]

 (ii) examples noInParty data type/range
 clientName presence/length/data type
 ([1] any two appropriate checks) [1]

 (b) Describe implementation of Exception Handling with reference to try catch
finally

 many different classes available or inbuilt
 an example
 error messages

 (i) apply appropriate checks to value before SET of field
 An error causes a throw of an exception object.
 Customised class must extend Exception class.
 ([1] each for any six) [6]
 Or any other valid

 (ii) try{ } surrounding input of value and
 set of value
 catch{ } deals with customised exception/Exception
 finally{ } tidy up code
 ([1] each aspect emboldened) [3] 13

www.xtrapapers.com

10140.01 F 6 [Turn over

AVAILABLE
MARKS

5 (a) Abstract class cannot be instantiated as accommodation is common
 data and must be extended to denote a specific type.
 ([1] non instantiation, [1] commonality, [1] extended) [3]

 (b)
 public double incomeYear()
 {
 return rent * noRentPaymentsPerYear;
 }
 ([1] return, [1] calculation) [2]

 (c) (i) class Flat:Housing ([1] class Flat, [1] extends Housing)
 {
 double maintenanceCharge; ([1] field/[0] if others included)

 public Flat(int accommodationNo, String address1, String address2,
 String postcode, double valuation, double rent, int
 noRentPaymentsPerYear,
 String type, int noBedrooms, int noCarParkingSites,
 double maintenanceCharge)
 ([2] all fields/[1] maintenanceCharge only,)

 : base(accommodationNo, address1, address2,
 postcode, valuation, rent, noRentPaymentsPerYear, type,
 noBedrooms, noCarParkingSites)
 ([1] pass base, [1] fields to Housing:Accommodation)
 {
 this.maintenanceCharge = maintenanceCharge; ([1])
 } [9]

 GET/SET [1] mark (Do not penalise Header again)

 (ii) public override double incomeYear() ([1] override, [1] no parameters)
 {
 return base.incomeYear() + maintenanceCharge;
 } ([1] base call, [1] add maintenanceCharge) [4]

 (iii) override [1]

 (d) double incomeTotal = 0.0; ([1] initialisation)
 for (int x = 0; x < accArray.Length; x++) ([1] loop)
 {
 incomeTotal += accArray[x].incomeYear();

}
 ([1] add, [1] method call)

 Console.WriteLine("\n\tYearly Income {0:.00} ", incomeTotal);
 ([1]) [5] 24

www.xtrapapers.com

AVAILABLE
MARKS

10140.01 F 7 [Turn over

6 (a) : IComparable/implements Comparable
 – implements an interface
 – to allow comparison of two objects
 – return type is integer-0 if same, -ve if smaller,+ve if greater.
 – Allows use of Array/Arrays class
 – Sort an array of objects
 – applies structure
 – inherits methods
 – empty methods in interface
 – polymorphism
 – stimulates multiple inheritance
 [1] each for any four [4]

 (b) public int CompareTo(Object obj)
 {
 Accommodation other = obj as Accommodation;
 return this.rent.CompareTo(other.rent);
 }
 ([1] header, [1] – cast , [1] comparison, [1] return
 [1] – using call CompareTo) [5]

 (c) Array.Sort(accArray);
 Console.WriteLine("\n\tProperties in order of rent charged\n\n”);
 for (int x = 0; x < accArray.Length; x++)

{
 Console.WriteLine(accArray[x].ToString());
 }
 (SORT – [1] class Array, [1] array parameter)
 ([1] loop [1] output index, [1] array name) [5] 14
 Alternative solution
 Allow sorting routine
 naming routine
 reference to rent field
 swap of object
 loops
 Any two, one mark each

 Total 100

www.xtrapapers.com

