
Software Systems Development

Unit AS 1:

Introduction to Object Oriented Development

[A1S11]

MONDAY 15 MAY, AFTERNOON

10655.01 F

MARK
SCHEME

ADVANCED SUBSIDIARY (AS)
General Certificate of Education

2017

www.xtrapapers.com

10655.01 F 2 [Turn over

General Marking Instructions

Introduction
Mark schemes are published to assist teachers and students in their preparation for examinations.
Through the mark schemes teachers and students will be able to see what examiners are looking for in
response to questions and exactly where the marks have been awarded. The publishing of the mark
schemes may help to show that examiners are not concerned about finding out what a student does not
know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes
Examination papers are set and revised by teams of examiners and revisers appointed by the Council.
The teams of examiners and revisers include experienced teachers who are familiar with the level and
standards expected of students in schools and colleges.

The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to
review the questions and mark schemes commenting on a large range of issues about which they must
be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues
of differentiation and positive achievement can be addressed right from the start. Mark schemes,
therefore, are regarded as part of an integral process which begins with the setting of questions and
ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all
the markers are following exactly the same instructions and making the same judgements in so far as
this is possible. Before marking begins a standardising meeting is held where all the markers are
briefed using the mark scheme and samples of the students’ work in the form of scripts. Consideration
is also given at this stage to any comments on the operational papers received from teachers and their
organisations. During this meeting, and up to and including the end of the marking, there is provision for
amendments to be made to the mark scheme. What is published represents this final form of the mark
scheme.

It is important to recognise that in some cases there may well be other correct responses which are
equally acceptable to those published: the mark scheme can only cover those responses which
emerged in the examination. There may also be instances where certain judgements may have to
be left to the experience of the examiner, for example, where there is no absolute correct response – all
teachers will be familiar with making such judgements.

www.xtrapapers.com

AVAILABLE
MARKS

10655.01 F 3 [Turn over

1 (i) Instantiation is the creation of an object to the design of a class.

 (ii) __ Object _____ is the base building block of an object-oriented system and
all __ classes ______ are derived from it.

 (iii) _ overloading ____ occurs where two or more methods have the same
name but different ___ signatures ___, even if their return types differ.

 (iv) Customising a super / base method within a derived / sub class is known as
_ overriding _____.

 (v) Multiple inheritance is implemented in C#/Java through the use of _

interfaces _____.

 (vi) A primary concept of object-oriented programming is _ polymorphism _.
It allows sub / derived class methods to be invoked through a super / base
class reference during run-time. This is enabled through _ late binding.

 ([1] each) [9] 9

2 (a) // constant variable hourlyRate holding value 20.
 C# – private const double hourlyrate = 20.0; allow int.

or Java – private static final double HOURLYRATE = 20.0;
 ([1] const/static final, [1] assignment) [2]

 // GET and SET - C#
 public int NoHours { [1] type/[1] if no brackets
 get { return noHours; } [1]
 set { noHours = value; } [1]
 }

 OR GET/SET java example
 public int getNoHours() [1] alt
 {
 return noHours; [1] alt
 }
 public void setNoHours (double noHours) { [1] alt
 this. noHours = noHours; [1] alt
 }
 [4]

 // A method to determine the productionCost due on a job.
 public double productionCost(){
 return noHours * hourlyRate + materialCost + specialismCost
 }
 [1] return type, [1] no parameters, [1] correct return [3]

 // A method to determine the salePrice for a job.
 public double salePrice(){
 return productionCost() * 1.4
 }
 [1] return type, [1] no parameters,, [1] calculation, [1] return [4]

(only if method used with brackets)

www.xtrapapers.com

10655.01 F 4 [Turn over

AVAILABLE
MARKS

 (b) A program using the class Job has the following two lines of code:

 Job [] jobArray = new Job[150];

 (i) Instantiate array
 size 150
 References objects of type Job
 Initialised to null – no references set
 [1] each any two, with correct terms used [2]

 (ii) Available lamps for sale - sample solution

 int size =72;
 double totalProductionCosts= 0.0;
 for(int x=0; x<size; x++){
 if(jobArray[x].Category == 'A' && jobArray[x].SaleDate.Year ==

 0001)
 { Console.WriteLine(jobArray[x].toString());
 totalProductionCosts+= jobArray[x].ProductionCost();
 }
 Console.WriteLine(“\n\nTotal production cost “ +

 totalProductionCosts);
 }
 [1] initialisation of totalproductionCosts
 [1] loop, [1] terminator (72 or variable)
 [1] check of category (penalise if not == or correct quote marks),
 (Do not penalise if full date comparison used but note CompareTo

 against it)
 [1] check date,
 [1] call of toString()
 [1] running total, [1] ouput [8] 23

3 Sorting is a common activity conducted on data in information processing.

 (a) (i) Selection, Bubble, Quicksort, Insertion or other
[1]

 The bubble sort is a simple sorting algorithm not suitable for large sets
of data due to O(n2) performance. The bubble sort passes sequentially
over a list, comparing each value to the adjacent following value. Their
positions are swapped if the first value is greater. Each pass finds the
maximum item and puts it at the end and so the list to be sorted can be
reduced at each pass. A boolean variable is used to track if any swaps
have been made in the current pass. The algorithm terminates when a
pass completes without any swaps (boolean variable is false).

 OR pseudocode as follows (assuming 0-based indexing):
 repeat
 swap = false
 decrease listSize by 1
 repeat index x from 0 to listSize
 if (list[x]) > (list (x + 1))
 swap list items
 swap = true
 until swap = false

 [1] each - description of sequence, pass, swap method, termination [5]

www.xtrapapers.com

AVAILABLE
MARKS

10655.01 F 5 [Turn over

 (ii) Allow alternative to chosen sort in (i)
 Sample illustration of bubble

5 16 11 7 26

1st pass 5 11 7 16 26 2 swaps(true)

2nd pass 5 7 11 16 26 1 swap (true)

3rd pass 5 7 11 16 26 0 swap (false) – terminate

 [1] each for any two correct swaps
 [1] any correct pass list involving swap
 [1] correct termination
 [1] all correct [5]

 Reverse Bubble

Pass 1 5 16 11 7 26

16 5

16 11 5

16 11 7 5

16 11 7 26 5

Pass 2 16 11 26 7 5

Pass 3 16 26 11 7 5

Pass 4 26 16 11 7 5

 n – 1 passes

 Interchange/Selection example
 Interchange/Selection sort is a simple sort with O(n2) performance.

Each pass finds the minimum value, swaps it with the value in the first
position of the current pass list. The pass list is reduced each time. It
does no more than n swaps.

Sample illustration of Selection sort

5 16 11 7 26

1st pass 5 11 7 16 26 starting at position 1 – no swap

2nd pass 5 7 11 16 26 starting at position 2 swap 7 and 16

3rd pass 5 7 11 16 26 starting at position 3 no swap

4th pass 5 7 11 16 26 starting at position 4 no swap

 QuickSort example

 Popular sort which selects a pivot value and moves all lesser values to
the left and all greater values to the right. Recursion is used to sort the
left and right partitions until a single value remains. Generally has O(n
log n) performance but worst can be O(n2) .

 Quicksort(array, startPosition, endPosition)

www.xtrapapers.com

10655.01 F 6 [Turn over

AVAILABLE
MARKS

Sample illustration of Quicksort sort

5 16 11 7 26

Pivot 11 – swap with number in fi rst position

11 16 5 7 26

Move Io to fi rst number from left greater than pivot – 16

Move hi to fi rst number from right less than pivot – 7 and swap

11 7 5 16 26

repeat 11 7 5 16 26 hi passes lo –

to end partition swap hi with pivot

5 16 11 7 26

 (b) (i) C# - interface IComparable
 Or Java - interface Comparable
 [1] each [2]

 (ii) Sample answer java
 public int compareTo(Object obj){
 Product productObj = (Product)obj;
 if(this.category.compareTo(productObj.category) < 0)
 return -1;
 else if(this.category.compareTo(productObj.category) > 0)
 return 1;
 else
 if(this.price < productObj.price)
 return -1;
 else if(this.price > productObj.price)
 return 1;
 else
 return 0;
 }

 [1] visibility, [1] return type, [1] add correct name CompareTo parameter
 [1] comparison of lesser category, [1] return
 [1] comparison of greater category, [1] return
 [1] check lesser price on same category
 [1] check greater price on same category
 [1] Return zero on same price
 [1] if class fields used – not the get/set [11] 23

 Alternate marks
 A B
 [1] use of CompareTo [1] compareTo
 [1] return [1] return
 [1] greater [1] lesser/greater
 [1] lesser

A

B

www.xtrapapers.com

AVAILABLE
MARKS

10655.01 F 7 [Turn over

 Alternative answer to 3(b)(ii)
 int comp = this.category.Compare to (product Obj.category);
 if (comp = = 0)
 //code as for price comparison

 return comp

4 (a) Sample C# answer
 Console.WriteLine(String.Format(“\n {0,-8} {1,–15} {2:D} {3:C} {4:C}”,

stockNo, model, qtyInStock, price, (qtyInStock * price));

 Sample java formats %-8s %-15s %2d %8.2f %10.2f

 [1] layout – minimum of 4 fields,
 [1] for appropriate format any one of the numbers,
 [1] correct stock value [3]

 (b) C# [Serializable]
 Or Java implements Serializable [1]

 (c) C#/Java
 Open and Read contents of file, stock.dat into a stream.
 Set strm to reference the stream
 Java [1] instantiation of type, [1] open file stock [1] declaration
 C# [1] assign [1] Open Read Stockfile
 C# Instantiate object of type BinaryFormatter to handle bit patterns
 (Java instantiate object of type ObjectInputStream to handle stream as

objects and primitive data)
 C# [1] instantiation of type, [1] handle patterns JAVA [1] handle stream
 (create) [1] reference object strm
 [1] instantiation
 Read a pattern from stream cast as one type Stock object
 Into current position in an array of Stock objects.
 C# Java [1] read primitive data/object, [1] pattern of stock object
 C# only [1] current position index, [1] array of stock objects [8]

 (d) IOException
 SerializableException IndexOutOfRange not acceptable
 FileNotFound
 Exception
 [1] each for any two [2] 14

www.xtrapapers.com

10655.01 F 8 [Turn over

AVAILABLE
MARKS5 (a) Class object cannot be instantiated [1]

 More data required to describe valid event type, derived [1] [2]

 (b) Sample answer
 public double HostedIncome()
 {
 return (ticketcharge - venueChargePerPerson) * noAttended +

 donation;
 }
 [1] correct header, [1] calculation of ticket profit, [1] addition of donation,

[1] return [4]

 (c) C# example
 class FlagDay: Event [1]
 {
 private int noOfBoxes;

 private double[] arrayBoxAmount; [1]

 FlagDay(int eventNo, Date eventDate, String branchName, int
startTime, int endTime, int noOfBoxes)

 :base(eventNo, eventDate, branchName, startTime, endTime)
 {
 NoOfBoxes = noOfBoxes;
 }
 [1] all relevant parameters, [1] base, [1] base fields
 [2] call of Set Property /method ([1] if Set code repeated)
 public int NoOfBoxes
 {
 get { return noOfBoxes;}
 set { this.noOfBoxes = value;
 arrayBoxAmount = new double[noOfBoxes];}
 }
 [1] header, [1] assignment , [1] array instantiation in constructor or set,
 [1] return

 OR GET / SET java example

 public int getNoOfBoxes() [1] either correct header alt
 {
 return noOfBoxes; [1] return alt
 }
 public void setNoOfBoxes(int noOfBoxes) {
 this. noOfBoxes = noOfBoxes; [1] assignment alt
 arrayBoxAmount = new double[noOfBoxes]; [1] instantiation alt
 } [11]

 (d) public double FlagDayIncome(){
 double total =0.0;
 for(int x =0; x< arrayBoxAmount.Length; x++)
 total+= arrayBoxAmount[x];
 return total;
 }
 [1] header return type, [1] no parameters
 [1] initialisation
 [1] loop, [1] calculation, [1] index or if foreach used correctly
 [1] return [7] 24

www.xtrapapers.com

AVAILABLE
MARKS

10655.01 F 9 [Turn over

6 Sample C# answer
 public double BranchIncome (Event [] arrayEvent, String r
 requiredBranch, int currentSize)
 {
 double total = 0.0;
 for(int x =0; x< currentSize; x++)
 {
 if(arrayEvent[x].BranchName.CompareTo (requiredBranch) ==0)
 {
 if (arrayEvent[x].GetType() == typeof(Hosted))
 OR if (arrayEvent[x] is Hosted)
 total += ((Hosted)arrayEvent[x]).HostedIncome();
 else
 total += ((FlagDay)arrayEvent[x]).FlagDayIncome();
 }
 }
 return total;
 }
 [1] initialization total, [1] loop
 [1] decision equality of branch name,
 [1] check of Event type
 [1] total addition, [1] either income method use of array index
 [1] return

 Note: Java uses instanceOf for type comparison [7] 7

 Total 100

www.xtrapapers.com

