
Software Systems Development

Unit AS 1:

Introduction to Object Oriented Development

[A1S11]

WEDNESDAY 20 MAY, AFTERNOON

9883.01 F

MARK
SCHEME

ADVANCED SUBSIDIARY (AS)
General Certificate of Education

2015

www.xtrapapers.com

9883.01 F 2 [Turn over

General Marking Instructions

Introduction
Mark schemes are published to assist teachers and students in their preparation for examinations.
Through the mark schemes teachers and students will be able to see what examiners are looking for in
response to questions and exactly where the marks have been awarded. The publishing of the mark
schemes may help to show that examiners are not concerned about finding out what a student does not
know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes
Examination papers are set and revised by teams of examiners and revisers appointed by the Council.
The teams of examiners and revisers include experienced teachers who are familiar with the level and
standards expected of students in schools and colleges.

The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to
review the questions and mark schemes commenting on a large range of issues about which they must
be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues
of differentiation and positive achievement can be addressed right from the start. Mark schemes,
therefore, are regarded as part of an integral process which begins with the setting of questions and
ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all
the markers are following exactly the same instructions and making the same judgements in so far as
this is possible. Before marking begins a standardising meeting is held where all the markers are
briefed using the mark scheme and samples of the students’ work in the form of scripts. Consideration
is also given at this stage to any comments on the operational papers received from teachers and their
organisations. During this meeting, and up to and including the end of the marking, there is provision for
amendments to be made to the mark scheme. What is published represents this final form of the mark
scheme.

It is important to recognise that in some cases there may well be other correct responses which are
equally acceptable to those published: the mark scheme can only cover those responses which
emerged in the examination. There may also be instances where certain judgements may have to
be left to the experience of the examiner, for example, where there is no absolute correct response – all
teachers will be familiar with making such judgements.

www.xtrapapers.com

AVAILABLE
MARKS

9883.01 F 3 [Turn over

1 Some sample words – there are others

 base classes derived different existing

 implements interfaces late binding methods multiple

 private properties protected public related

 single

 Correct usage of words required – must be used in context

 Sample answer

 (i) Encapsulation means that a group of related properties, methods, and
 other members are treated as a single unit or object. Objects can control
 how properties are changed and methods are executed by use of the

visibility modifiers private public protected (describe each). An object can
validate values before enabling property changes. Encapsulation also makes
it easier to change your implementation at a later date by letting you hide
implementation details of your objects, a practice called data hiding.

 [1] × any 4

 (ii) Inheritance describes the ability to create new derived (child) classes
based on an existing super (base) class. The new class inherits the
visible properties and methods and events of the base class, and can
be customised with additional properties and methods. Base methods can
be redesigned in the derived class which is known as overriding. Multiple
inheritance is not available but can implement interfaces to overcome
this.

 [1] × any 4

 (iii) Polymorphism means that you can have multiple classes derived from
a base class that can be used interchangeably, even though each
class implements the same properties or methods in different ways.
Polymorphism is important to object-oriented programming because it
lets you use items with the same names, regardless of what type of object
is in use at the moment through late binding. Allow reference to overriding
methods.

 [1] × any 4 [12] 12

2 (a) Reuse of code
 Structured design to simplify solution
 Multiple developers
 Development time improved
 Simplified testing
 Facility of overloading and overriding
 Or other relevant reason
 [1] × any 3 [3]

www.xtrapapers.com

9883.01 F 4 [Turn over

AVAILABLE
MARKS

 (b) sample answer:
 public static double findCost(char style, int size){ [3]
 (1 mark return type, 1 mark each type of parameter)
 double cost = 0; [1]

 switch(style) { (correct case) [1]
 case ‘S’: cost = 120; break;
 case ‘R’: cost = 139.99; break;
 case ‘I’: cost = 215; break;
 case ‘C’: cost = 349.99; break;
 } (1 mark any correct cost, 1 for break) or efficiency of if [2]

 if(size == 2) [1]
 cost*= 1.5;
 cost*= 1.2; [1]

 return cost; [1] [10]
 }

 (c) sample answer java for style
 do{
 p(“\n\tEnter style S – square, R – rectangle …. : “);

 style = key.nextline().charAt(0); [1]
 if(style != ‘S’ && style!= ‘R ….) [1]
 p(“\n\tError – Please re-enter”);
 while(style != ‘S’ && style!= ‘R ….)) [1]

 sample answer c# for size
 do{
 ok = true;
 try{
 Console.SetCursorPosition(5, 12);
 Console.Write("Enter size 1 – Standard, 2 – Deluxe : }) : “);
 size = Convert.ToInt32(Console.ReadLine());
 if (size< 1 || size> 2) // test range 1,2
 ok = false;
 }
 catch (Exception ex) {
 ok = false;
 }
 if (!ok) { // error message printed

 Console.SetCursorPosition(5, 25);
 Console.Write(“Error – Please re-enter”);
 clearErrMess();
 }
 } while (!ok);

 Check integer type - (Try- catch) [1]

 Entry of integer [1]
 Check range 1,2 [1]
 Output either data entry error message [1]
 loop [1]

 cost = findCost(style, size) [1]
 p(“\n\n\tCost of shed is : “) +cost; [1] [10] 23

www.xtrapapers.com

AVAILABLE
MARKS

9883.01 F 5 [Turn over

3 (a) Constructor – C# sample

 Loan(String loanCode, double amount, int noOfYears) { [1]
 LoanCode = loanCode;
 Amount = amount;

 NoOfYears = noOfYears;
 }
 [1] each x 3 [3]

 GET/SET c# sample

 public double Amount [2]
 (I mark type, 1 mark capital letter for amount or correct accessor
 and name)
 {
 get { return amount;} [1]
 set { amount = value;} [1]
 }

 OR

 GET / SET java example

 public double getAmount() [1]
 {
 return amount; [1]
 }
 public void setAmount(double amount) { [1]
 this.amount= amount; [1]
 }

 Method actualRate

 public double actualRate() [2]
 (1 mark return type, 1 mark name no parameters and the field
 ‘amount’ used in method)
 {
 double rate=5.5; [2]
 (1 mark type/name, 1 mark initialisation)
 if(amount > 150000)
 rate = 6.05; [1]
 else
 if(amount > 50000)
 rate = 5.25;
 (1 mark correct ‘if’, 1 mark correct rate) [1]

 if(noOfYears >= 7)
 rate-= 0.5;
 (1 mark correct ‘if’ OR 1 mark correct rate) [1]

 return rate; [1] [16]
 }

www.xtrapapers.com

9883.01 F 6 [Turn over

AVAILABLE
MARKS

 (b) (i) Instantiate loan object

 Loan aLoan = new Loan(loanCode, amount, noOfYears) [3]
 (1 mark type, 1 mark new, 1 mark parameters)

 (ii) Output

 System.out.print(”\n\tActual rate of Interest : ”
 + aLoan.actualRate()); [2] [5] 21
 (I mark write, 1 mark method call)

4 (a) Examples
 Exception
 IOException
 FileNotFoundException
 NumberFormatException
 IndexOutOfRangeException
 any one or other [1]

 (b)
 try{

 //body of code – jumps to catch blocks on error
 //does not process subsequent statements
 }
 catch(….){
 // throw new LoanException(“ “);
 or
 // deal with recovery

 }
 catch(….){

 // hierarchical blocks (Exception, if used, is last)

 }
 finally{

 // block of code processed regardless if errors found or not

 }
 (1 mark each try/catch/finally, 1 mark for any two correct description) [5]

 (c) Sample code C# public String LoanCode
 {
 get { return loanCode; }
 set { //implement validation / throw new exception
 String str = value;
 if (!validCode(str))
 throw new LoanException("Invalid Loan Code - Please check");
 else
 loanCode = value; }
 }
 (1 mark – structure, 2 mark throw invalid message, 1 mark setting
 correct value) [4]

www.xtrapapers.com

AVAILABLE
MARKS

9883.01 F 7 [Turn over

 Validation may be method or inline

 boolean okFlag= true;

 String letters = str.substring(0,2), digits = str.substring(2);
 int num;

 if(!letters.equals(“CA”) && !letters.equals(“CI”) && !letters.equals
 (“MA”))
 okFlag = false; [2]
 if(digits.All(Char.IsDigit)) // digits check will allow –1111
 {
 num = int.Parse(str);
 if(num <100000 11 num>199999)
 okFlag = false;
 }
 else
 okFlag = false; [2] [8] 14

 or use of tryParse or try-catch or array. Contains

5 (a) abstract [1]

 (b) public double calc_Income() [2]
 { (1 mark – type, 1 mark – no parameters)

 return noOfRentalsToDate * ratePerDay;
 } [1] [3]

 (c) C#
 class Car : Vehicle [1]

 java
 class Car extends Vehicle

 fields:
 private, type, name

 (3 Car fields only) [1]

 Constructors:
 Empty constructor

 Field constructor
 (1 mark base/super)
 (1 mark fields handled –passed to base and locallyset) [2]

 Properties/GetSet [3]
 (1 mark method name, 1 mark get, 1 mark set –any field)

 Override toString() method or

 Call of base/super.toString() [1] [8]

www.xtrapapers.com

9883.01 F 8 [Turn over

AVAILABLE
MARKS

 (d) (i) override header method calc_Income() [2]
 Sample code:
 double increaseRate = 1, income ; [1]
 switch(satNav)
 {
 case ‘B’: increaseRate = 1.04; break;
 case ‘C’: increaseRate = 1.075; break;
 } [1]

 income = base.calc_income();
 return income *= increaseRate; [1] [5]

 (ii) overriding
 allow polymorphism [1] 18

6 (a) Vehicle [] vehicleArray = new Vehicle[150]; [2]
 (1 mark class type, 1 mark instantiation)

 (b) vehicleArray[0] = new Car(base data……car data…) [2]
 (1 mark class type, 1 mark base and derived data values)

 (c) Sample answer

 double totalIncome = 0; [1]
 for(int x = 0; x< vehicleArray.Length; x++) [2]
 { (1 mark loop, 1 mark array length
 totalIncome += vehicleArray[x].calc_Income(); [3]
 (1 mark index, 1 mark method or Property, 1 mark add)
 }
 Console.WriteLine(“ total Income : “ + totalIncome); [2] [8] 12

 Total 100

www.xtrapapers.com

