

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2017

Chemistry
Assessment Unit AS 3
assessing
Module 3: Practical Examination
Practical Booklet B
[AC134]
FRIDAY 9 JUNE, AFTERNOON

**MARK
SCHEME**

Annotation

1. Please do all marking in **red** ink.
2. All scripts should be checked for mathematical errors. Please adopt a system of one tick (✓) equals 1 mark, e.g. if you have awarded 4 marks for part of a question then 4 ticks (✓) should be on this candidate's answer.
3. The total mark for each question should be recorded in a circle placed opposite the question number in the teacher mark column.
4. As candidates have access to scripts please do not write any inappropriate comments on their scripts.

General points

- All calculations are marked according to the number of errors made.
- Errors can be carried through. If the wrong calculation is carried out then the incorrect answer can be carried through. One mistake at the start of a question does not always mean that all marks are lost.
- Listing is when more than one answer is given for a question that only requires one answer, e.g. the precipitate from a chloride with silver nitrate is a white solid; if the candidate states a white or a cream solid, one answer is correct and one answer is wrong. Hence they cancel out.
- Although names might be in the mark scheme it is generally accepted that formulae can replace them. Formulae and names are often interchangeable in chemistry.
- The marking of colours is defined in the 'CCEA GCE Chemistry Acceptable Colours' document.

MARKING GUIDELINES

Interpretation of the Mark Scheme

- **Carry error through**
This is where mistakes/wrong answers are penalised when made, but if carried into further steps of the question, then no further penalty is applied. This pertains to calculations and observational/deduction exercises. Please annotate candidates' answers by writing the letters c.e.t. on the appropriate place in the candidates' answers.
- **Oblique/forward slash**
This indicates an acceptable alternative answer(s).
- **Brackets**
Where an answer is given in the mark scheme and is followed by a word/words in brackets, this indicates that the information within the brackets is non-essential for awarding the mark(s).

Section A

AVAILABLE
MARKS

1

	Rough	Accurate 1	Accurate 2	
Final burette reading	20.5	40.6	19.9	
Initial burette reading	0.0	20.5	0.0	
Titre/cm ³	20.5	20.1	19.9	

- (a) (i) 20.5, 20.1 and 19.9 [1]
 (ii) 20.0cm³ [1] [2]
- (b) Methyl orange [1]
 Yellow to red [2] [3]
- (c) $\text{Na}_2\text{CO}_3 + 2\text{HCl} \rightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{CO}_2$ [2]
- (d) moles of hydrochloric acid used in the titration
0.002
 moles of sodium carbonate in 25.0cm³
0.001
 moles of sodium carbonate in 500cm³
0.02
 mass of sodium carbonate in 500cm³
2.12g
 mass of water in the sample
3.60g/3.6g
 percentage of water of crystallisation in the sample
 $\frac{3.60}{5.72} \times 100 = 62.9/62.94$ [6]
- (e) Heat to constant mass [1] 14

- 2 (a) A mixture of two salts, labelled **A**, have a common cation. The following tests were carried out on **A**. Complete both columns in the table and identify the two salts.

AVAILABLE MARKS

Test	Observations	Deductions
1 Describe the appearance of A .	White solid	Does not contain a transition metal ion [1]
2 Dip a nichrome wire into concentrated hydrochloric acid, touch sample A with the wire, then hold it in a blue Bunsen flame.	Lilac flame	Contains K⁺/potassium ions [1]
3 Add concentrated sulfuric acid to a spatula measure of A in a boiling tube. Heat the boiling tube.	A grey-black solid forms A purple vapour forms Smell of rotten eggs	Iodine/iodide [1] Hydrogen sulfide [1] [2]
4 Add a spatula measure of A to a test tube half filled with dilute nitric acid. Add a few drops of silver nitrate solution.	A colourless solution forms with no effervescence A yellow precipitate forms	Not a carbonate or a hydrogencarbonate [1] Iodide ions/silver iodide [1] [2]
5 Add a spatula measure of A to a test tube half filled with deionised water. Add chlorine water.	A colourless solution forms Solution turns yellow/brown	[1]

Name the **two** salts present in **A**.

Potassium iodide [1]

Potassium sulfate [1]

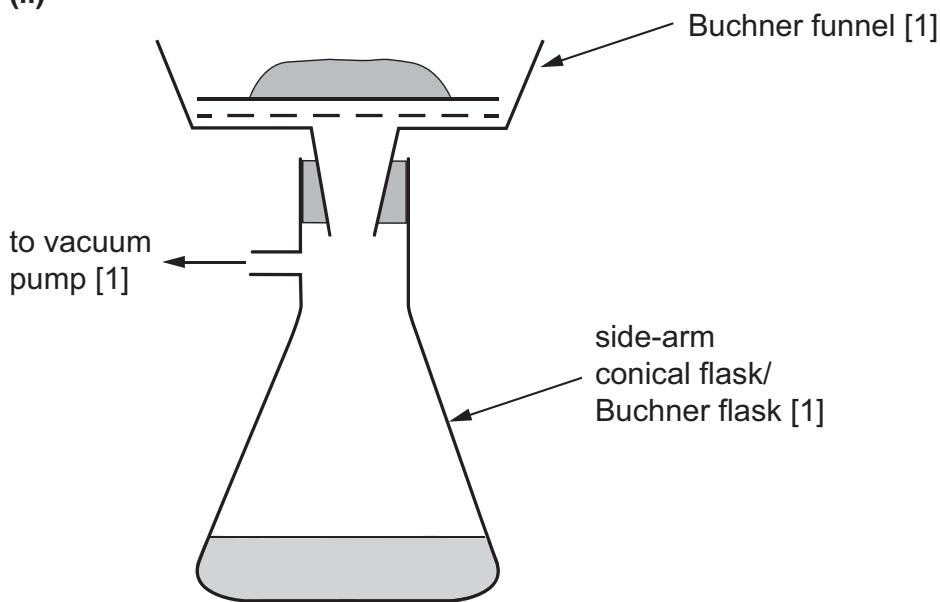
- (b) The following tests were carried out on an organic liquid **B**. Complete the table, giving observations and deductions.

Test	Observations	Deductions
1 Add 1 cm ³ of B to 1 cm ³ of water in a test tube.	A single layer forms	Soluble [1]
2 Add a spatula measure of phosphorus(V) chloride to 4 cm ³ of B in a boiling tube. Test any gas produced using damp blue litmus paper. Test any gas produced using a glass rod which has been dipped in concentrated ammonia solution.	Solid disappears Steamy fumes produced Hissing sound Paper turns red White smoke	–OH present [1] Gas is acidic [1] Hydrogen chloride [1]
3 Add 1 cm ³ of B to 2 cm ³ of acidified potassium dichromate in a test tube. Warm the mixture gently in a water bath.	The solution remains orange	Is not oxidised [1]

(CH₃)₃COH or CH₃CH₂CH₂COOH (or isomer of carboxylic acid) [1]

16

Section A


30

Section B			AVAILABLE MARKS
3	(a) Minimises heat gain from surroundings	[1]	
	(b) Improves insulation/increases stability	[1]	
	(c) Burette/pipette [1] thermometer [1] balance [1]	[3]	
	(d) $2\text{KHCO}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + 2\text{H}_2\text{O} + 2\text{CO}_2$	[2]	
	(e) To ensure that all KHCO_3 reacts	[1]	
	(f) Weigh 5.0g of potassium hydrogencarbonate using a balance Add/Transfer 50.0cm ³ of (2.0 mol dm ⁻³) sulfuric acid into a polystyrene cup using a burette/pipette Measure the initial temperature of the acid using a thermometer Add/Transfer the potassium hydrogencarbonate into the acid Stir (the contents with the thermometer) Measure the final temperature/lowest temperature reached	[1] [1] [1] [1] [1] [1] [6]	
	(g) Number of moles in 5.0 g of potassium hydrogencarbonate $0.05 \left(\frac{5.0}{100} = 0.05 \right)$	[1]	
	Heat energy (in kJ) absorbed from the solution $1.5 \ (30 \times 0.05)$	[1]	
	Heat energy (in J) absorbed from the solution $1500 \ (1.5 \times 1000)$	[1]	
	Temperature change (ΔT) $7.2/7.18 \ \left(\frac{1500}{4.1 \times 50} \right)$	[1]	
	Final temperature of solution (°C) $10.82/10.8 \ (18 - 7.2)$	[1] [5]	
	(h) Effervescence/colourless solution forms/solid disappears	[1]	20

4 (a) (i) $\text{KBr} + \text{H}_2\text{SO}_4 \rightarrow \text{KHSO}_4 + \text{HBr}$

[1]

(ii)

[3]

(iii) Goggles and gloves

[1]

(b) Propan-2-ol

[1]

(c) Anti-bumping granules

[1]

(d) Isopropyl alcohol unlikely to ignite/easier to control

[1]

(e) Hydrobromic acid/hydrogen bromide

[1]

(f) Add water [1]

organic layer stays the same/does not increase [1]

[2]

(g) Drying agent

[1]

(h) 2-bromopropane RMM = 123

Theoretical yield 13.3g

Theoretical yield 0.108 moles

Moles isopropyl alcohol = 0.108

Mass of isopropyl alcohol (RMM = 60) = 6.48/6.5g

[4]

16

Section B

36

Total

66