

Rewarding Learning
ADVANCED
General Certificate of Education
2017

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Chemistry

Assessment Unit A2 1

assessing

Periodic Trends and Further
Organic, Physical and
Inorganic Chemistry

[AC212]

MV18

TUESDAY 13 JUNE, AFTERNOON

Time

2 hours, plus your additional time allowance.

Instructions to Candidates

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer **all nineteen** questions.

Answer **all ten** questions in **Section A**. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.

Answer **all nine** questions in **Section B**.

You must answer the questions in the spaces provided.

Complete in black ink only.

Information for Candidates

The total mark for this paper is 120.

Quality of written communication will be assessed in
Question 16(b).

In Section A all questions carry equal marks, i.e. **two** marks for each question.

In Section B the figures in brackets printed at the end of each question indicate the marks awarded to each question or part question.

A Periodic Table of Elements, containing some data, is included in this question paper.

Section A

For each of the following questions only **one** of the lettered responses (A–D) is correct.

Select the correct response in each case and mark its code letter by connecting the dots as illustrated on the answer sheet.

1 X and Y react according to the equation:

The rate equation for the reaction is:

$$\text{Rate} = k[X]^0[Y]^2$$

Which one of the following is the mechanism for the reaction?

2 The pH range and associated colour changes for the indicators methyl red and bromothymol blue are given below.

indicator	pH range	colour change
methyl red	4.2–6.3	red to yellow
bromothymol blue	6.0–7.6	yellow to blue

A solution which turns both indicators yellow is

A strongly acidic.
 B weakly acidic.
 C strongly basic.
 D weakly basic.

3 The partition coefficient of solute X between trichloroethane and water is 4.

A solution containing 20 g of X in 100 cm³ of water is extracted with two 100 cm³ portions of trichloroethane in succession. What mass of X is removed by the trichloroethane?

A 0.8 g
 B 4.0 g
 C 16.0 g
 D 19.2 g

4 Which one of the following alcohols can **not** be oxidised with acidified potassium dichromate solution?

A 2-methylbutan-1-ol

B 2-methylbutan-2-ol

C 3-methylbutan-1-ol

D 3-methylbutan-2-ol

5 Which one of the following molecules, when reduced with lithium, forms optically active isomers?

A $\text{CH}_3\text{CH}_2\text{CH}_2\text{CHO}$

B $\text{CH}_3\text{CH}_2\text{COCH}_3$

C $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CHO}$

D $\text{CH}_3\text{CH}_2\text{COCH}_2\text{CH}_3$

6 Lard has a saponification value of 193. What volume of 0.1 mol dm^{-3} potassium hydroxide solution is required to completely hydrolyse 0.96 g of lard?

A 33.1 cm^3

B 34.5 cm^3

C 331 cm^3

D 345 cm^3

7 Which one of the following reactions will **not** form propanoic acid?

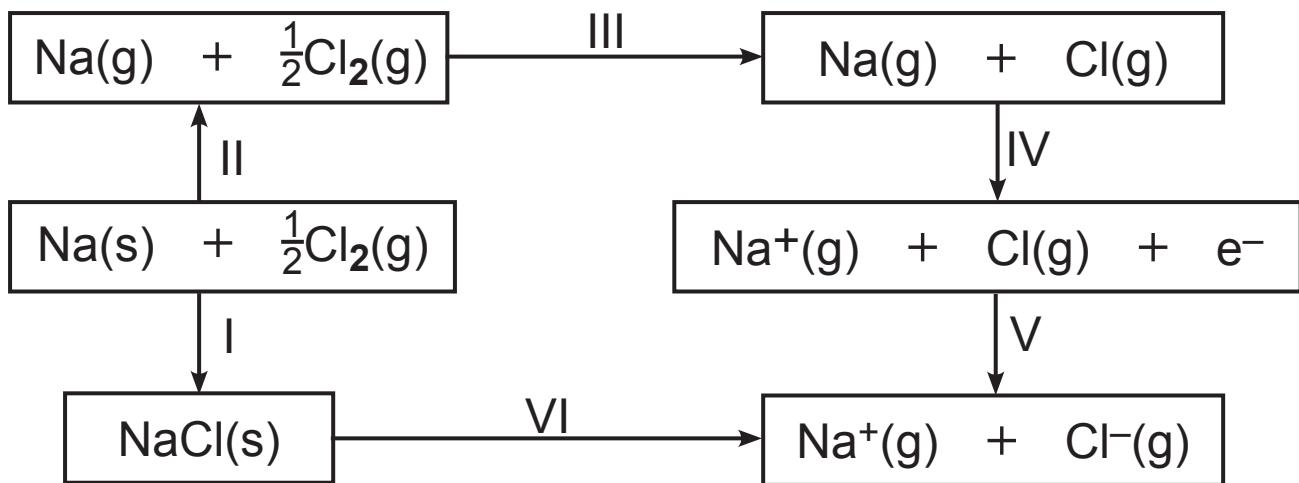
A Acid catalysed hydrolysis of ethyl propanoate

B Acid catalysed hydrolysis of propyl ethanoate

C Acid catalysed hydrolysis of propanenitrile

D Oxidation of propan-1-ol

8 Concentrated sulfuric acid and concentrated nitric acid react to form a nitrating mixture according to the equation:


Which one of the following statements is correct?

- A Nitric acid is acting as an acid
- B Nitric acid is acting as an oxidising agent
- C Sulfuric acid is acting as an acid
- D Sulfuric acid is acting as an oxidising agent

9 Ethanoic acid has a K_a of $2 \times 10^{-5} \text{ mol dm}^{-3}$. How many moles of sodium ethanoate must be added to 500 cm^3 of 0.1 mol dm^{-3} ethanoic acid to produce a buffer of pH 5?

- A 0.1
- B 0.2
- C 0.3
- D 0.4

10 The diagram below represents the Born–Haber cycle for sodium chloride.

In which one of the following are both steps exothermic?

- A I and V
- B II and IV
- C IV and VI
- D V and VI

Section B

Answer **all nine** questions in this section.

11 (a) Complete the table below for some of the oxides and chlorides in Period 3. [4 marks]

	MgO	Al_2O_3	P_4O_{10}	MgCl_2
type of bonding				
approximate pH of aqueous solution, if formed				

(b) Write equations for the following reactions.
[1 mark for each]

(i) Magnesium oxide with nitric acid.

(ii) Aluminium oxide with sodium hydroxide solution.

(iii) Phosphorus(V) oxide with water.

(iv) Phosphorus(V) chloride with water.

(c) The lattice enthalpy of magnesium chloride is 2489 kJ mol^{-1} .

(i) Explain what is meant by the term **lattice enthalpy**.
[2 marks]

(ii) Use the lattice enthalpy of magnesium chloride and the information below to calculate the enthalpy of hydration for one mole of chloride ions.
[2 marks]

Enthalpy of solution of
magnesium chloride = -170 kJ mol^{-1}

Enthalpy of hydration of
magnesium ions = $-1891 \text{ kJ mol}^{-1}$

12 Equilibrium reactions are found in many areas of chemistry.

(a) (i) Bismuth carbonate, $\text{Bi}_2(\text{CO}_3)_3$, reacts with hydrochloric acid to form a colourless solution of bismuth chloride, BiCl_3 . Write an equation for the reaction. [2 marks]

(ii) If the bismuth chloride solution is diluted the following equilibrium is set up:

Explain how the following changes affect the position of the equilibrium. [2 marks for each]

Adding water:

Adding sodium hydroxide solution:

(b) A mixture of 2 moles of SO_2 and 1 mole of O_2 were allowed to reach equilibrium in a 2dm^3 container.

At equilibrium 75% of the SO_2 was converted to SO_3 . Calculate the value of K_c and state its units. [4 marks]

13 Carbon dioxide, CO_2 , methane, CH_4 , and nitrogen(I) oxide, N_2O , are considered to be greenhouse gases.

(a) (i) State **three** natural processes upon which the concentration of carbon dioxide in the atmosphere depends and how they affect this concentration.
[3 marks]

1. _____

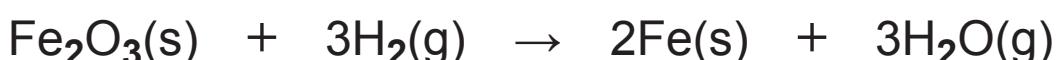
2. _____

3. _____

(ii) Suggest how methane and nitrogen(I) oxide act as greenhouse gases. [2 marks]

(b) Nitrogen(I) oxide is approximately 20 times more effective as a greenhouse gas than methane. Suggest why methane is of greater concern as a greenhouse gas than nitrogen(I) oxide. [1 mark]

14 Entropy is an important concept when establishing the feasibility of a reaction.


(a) Explain what is meant by the term **entropy**. [1 mark]

(b) Iron(III) oxide can be reduced to iron.

The table below gives the enthalpies of formation and the entropies of the reactants and products.

	$\text{Fe}_2\text{O}_3(\text{s})$	$\text{H}_2(\text{g})$	$\text{Fe}(\text{s})$	$\text{H}_2\text{O}(\text{g})$
$\Delta H_f/\text{kJ mol}^{-1}$	-822	0	0	-242
$S/\text{kJ mol}^{-1} \text{K}^{-1}$	0.09	0.13	0.03	0.19

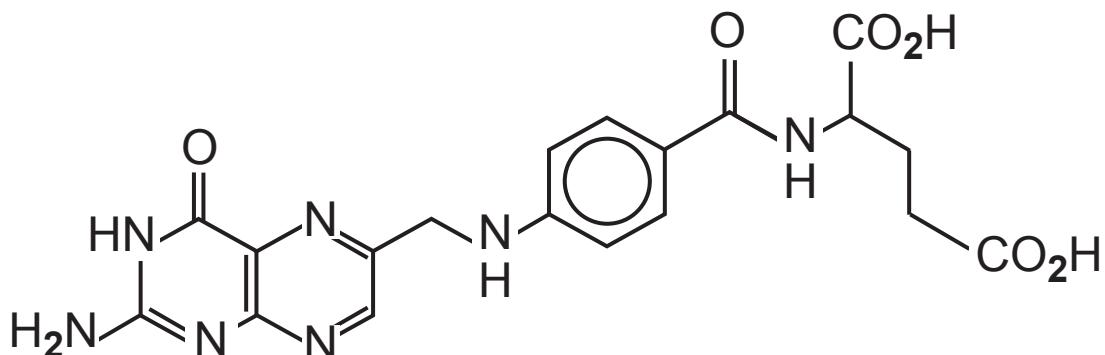
(i) Why are the ΔH_f values of $\text{Fe}(\text{s})$ and $\text{H}_2(\text{g})$ zero? [1 mark]

(ii) Calculate the enthalpy change for the reaction. [2 marks]

**(iii) Calculate the entropy change for the reaction.
[2 marks]**

**(iv) Use your answers to parts (ii) and (iii) to calculate
the temperature at which the reaction becomes
feasible. [2 marks]**

**(v) Explain why the reaction may not take place at this
temperature. [1 mark]**



15 Folic acid is an essential nutrient in our diet.

folic acid

(a) Folic acid contains an asymmetric centre, making it optically active.

(i) Explain what is meant by the term **asymmetric centre**. [1 mark]

(ii) Explain what is meant by the term **optically active**. [2 marks]

(iii) On the diagram of folic acid above, circle the asymmetric centre. [1 mark]

(b) (i) What is the molecular formula of folic acid?

[1 mark]

(ii) The solubility of folic acid is 6.1×10^{-3} g dm $^{-3}$.

Calculate the molarity of this solution of folic acid.

[2 marks]

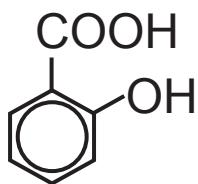
(c) The first pK_a of folic acid is 4.65.

(i) Explain why folic acid has more than one pK_a .

[1 mark]

(ii) Using the first pK_a , calculate the pH

of a 1×10^{-5} mol dm $^{-3}$ solution of folic acid.


[3 marks]

16 Salicylic acid can be esterified to form 'oil of wintergreen' and aspirin.

salicylic acid

(a) (i) 'Oil of wintergreen' is made by esterification of salicylic acid with methanol. Draw the structure of 'oil of wintergreen'. [1 mark]

(ii) Suggest the non-systematic name for the ester 'oil of wintergreen'. [1 mark]

(iii) Aspirin can be made by esterification of salicylic acid with ethanoic acid. Draw the structure of aspirin. [1 mark]

(iv) Suggest an alternative reagent to ethanoic acid in the formation of aspirin and give **one** advantage of using this reagent. [2 marks]

(b) An impure sample of 'oil of wintergreen' was obtained in a round-bottom flask by reacting methanol with salicylic acid in the presence of concentrated sulfuric acid. Give experimental details of how a sample of 'oil of wintergreen' could be obtained from the reaction mixture. Explain how the sample could be further purified by removing acidic impurities and water. [5 marks]

Quality of written communication [2 marks]

(c) (i) Write the equation for the reaction of salicylic acid with thionyl chloride. [2 marks]

(ii) Write an equation for the reaction of salicylic acid with lithal.
(Use [H] to represent lithal.) [2 marks]

BLANK PAGE

(Questions continue overleaf)

17 Fats and vegetable oils are triesters formed from fatty acids and propane-1,2,3-triol.

(a) Palmitic acid, $\text{CH}_3(\text{CH}_2)_{14}\text{COOH}$, and oleic acid, $\text{CH}_3(\text{CH}_2)_7\text{CH}=\text{CH}(\text{CH}_2)_7\text{COOH}$, are fatty acids. Suggest why palmitic acid is a solid at room temperature and oleic acid is a liquid. [2 marks]

(b) Cervonic acid is an unsaturated fatty acid.

cervonic acid

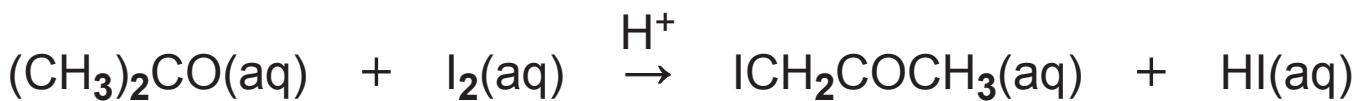
Unsaturated fats can be hardened by catalytic hydrogenation.

(i) Explain what is meant by the term **hydrogenation**. [1 mark]

(ii) Name the catalyst used in the hardening of unsaturated fatty acids. [1 mark]

**(iii) Calculate the iodine value for cervonic acid.
[3 marks]**

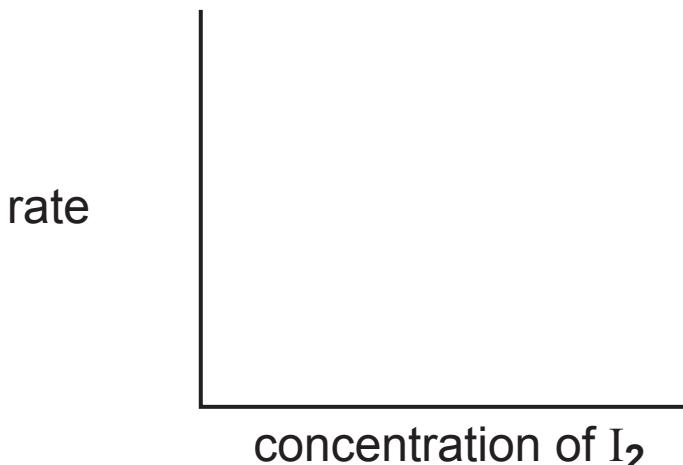
(c) Explain the role of polyunsaturates and polysaturates in a healthy diet. [3 marks]



18 (a) The reaction between propanone and iodine is catalysed by acid.

(i) State how the reaction could be “quenched” i.e. stopped without interfering with any of the reactants or products. [1 mark]

(ii) Explain how you could determine the rate of the reaction by an acid–base titration. [4 marks]



(iii) The reaction is zero order with respect to the iodine. Sketch a “rate against concentration” graph. [1 mark]

(b) Phosphinate ions, H_2PO_2^- , are found in insecticides and herbicides. The rate of the reaction between phosphinate ions and hydroxide ions was investigated.

The following results were obtained.

$[\text{H}_2\text{PO}_2^-](\text{aq})$ /mol dm $^{-3}$	$[\text{OH}^-](\text{aq})$ /mol dm $^{-3}$	initial rate of $\text{H}_2(\text{g})$ formation /cm 3 min $^{-1}$
0.1	0.1	2.4
0.1	0.2	9.6
0.2	0.3	43.2

(i) Deduce the rate equation. [2 marks]

(ii) What is the overall order of the reaction? [1 mark]

(iii) Calculate the rate constant and state its units.
[2 marks]

(iv) Suggest the disadvantages of using artificial phosphate fertiliser. [2 marks]

BLANK PAGE

(Questions continue overleaf)

19 Glutaraldehyde, $\text{OHC}(\text{CH}_2)_3\text{CHO}$, is used to sterilise dental equipment.

(a) Suggest the systematic name for glutaraldehyde.
[1 mark]

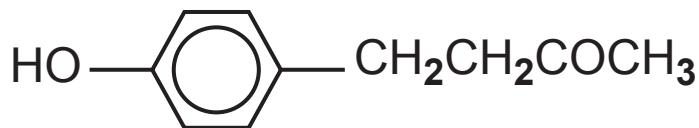
(b) Explain why glutaraldehyde is soluble in water.
[1 mark]

(c) (i) State the colour change observed when glutaraldehyde is reacted with Fehling's solution.
[1 mark]

(ii) Give the formulae of the metal ions responsible for the colour change. [1 mark]

(d) Glutaraldehyde can be formed by oxidising the corresponding alcohol.

(i) Write an equation, using [O] to represent the oxidising agent, for the formation of glutaraldehyde from the alcohol. [1 mark]


(ii) The oxidising agent is acidified potassium dichromate. State the condition necessary for this reaction. [1 mark]

(iii) State the colour change that would be observed during the reaction. [1 mark]

(e) The smell and flavour of raspberries is due in part to the 'raspberry ketone'.

'raspberry ketone'

(i) Draw the mechanism for the reaction of 'raspberry ketone' with hydrogen cyanide. Use RCOCH₃ to represent the ketone. [3 marks]

(ii) Write the equation for the reaction of 'raspberry ketone' with 2,4-dinitrophenylhydrazine. Use RCOCH₃ to represent the ketone. [2 marks]

(iii) Suggest how the product of the reaction in part (ii) could be used to confirm the identity of the 'raspberry ketone'. [1 mark]

THIS IS THE END OF THE QUESTION PAPER

For Examiner's use only	
Question Number	Marks
Section A	
1–10	
Section B	
11	
12	
13	
14	
15	
16	
17	
18	
19	
Total Marks	
Examiner Number	

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

Periodic Table of the Elements

For the use of candidates taking
Advanced Subsidiary and Advanced Level
Chemistry Examinations

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

gce A/AS examinations
chemistry
(advanced)

I	II	THE PERIODIC TABLE OF ELEMENTS												III	IV	V	VI	VII	O
1 H Hydrogen		One mole of any gas at 20°C and a pressure of 1 atmosphere (10 ⁵ Pa) occupies a volume of 24 dm ³ . Planck Constant = 6.63 × 10 ⁻³⁴ Js Gas Constant = 8.31 J mol ⁻¹ K ⁻¹ Avogadro Constant = 6.02 × 10 ²³ mol ⁻¹												4 He Helium					
1 Li Lithium	7 Be Beryllium													2 He Neon					
23 Na Sodium	24 Mg Magnesium													11 B Boron	12 C Carbon	14 N Nitrogen	16 O Oxygen	19 F Fluorine	20 Ne Neon
39 K Potassium	40 Ca Calcium	45 Sc Scandium	48 Ti Titanium	51 V Vanadium	52 Cr Chromium	55 Mn Manganese	56 Fe Iron	59 Co Cobalt	59 Ni Nickel	64 Cu Copper	65 Zn Zinc	70 Ga Gallium	73 Ge Germanium	75 As Arsenic	79 Se Selenium	80 Br Bromine	84 Kr Krypton		
19 Rb Rubidium	38 Sr Strontium	89 Y Yttrium	91 Zr Zirconium	93 Nb Niobium	96 Mo Molybdenum	99 Tc Technetium	101 Ru Ruthenium	103 Rh Rhodium	106 Pd Palladium	108 Ag Silver	112 Cd Cadmium	115 In Indium	119 Sn Tin	122 Sb Antimony	128 Te Tellurium	127 I Iodine	131 Xe Xenon		
55 Cs Caesium	56 Ba Barium	139 La Lanthanum	178 Hf Hafnium	181 Ta Tantalum	184 W Tungsten	186 Re Rhenium	190 Os Osmium	192 Ir Iridium	195 Pt Platinum	197 Au Gold	201 Hg Mercury	204 Tl Thallium	207 Pb Lead	209 Bi Bismuth	210 Po Polonium	210 At Astatine	222 Rn Radon		
87 Fr Francium	88 Ra Radium	227 Ac Actinium																	

* 58–71 Lanthanum series
† 90–103 Actinium series

a = relative atomic mass (approx.)
x = atomic symbol
b = atomic number

140 Ce Cerium	141 Pr Praseodymium	144 Nd Neodymium	147 Pm Promethium	150 Sm Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	162 Dy Dysprosium	165 Ho Holmium	167 Er Erbium	169 Tm Thulium	173 Yb Ytterbium	175 Lu Lutetium
58 Th Thorium	59 Pa Protactinium	60 U Uranium	61 Np Neptunium	62 Pu Plutonium	63 Am Americium	64 Cm Curium	65 Bk Berkelium	66 Cf Californium	67 Es Einsteinium	68 Fm Fermium	69 Md Mendelevium	70 No Nobelium	71 Lr Lawrencium