

Rewarding Learning
ADVANCED
General Certificate of Education
2017

Centre Number

--	--	--	--	--	--

Candidate Number

--	--	--	--	--	--

Chemistry

Assessment Unit A2 3
assessing
Module 3: Practical Examination
Practical Booklet B (Theory)

MV18

[AC234]

THURSDAY 22 JUNE, AFTERNOON

Time

1 hour 15 minutes, plus your additional time allowance.

Instructions to Candidates

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Complete in black ink only.

Answer **all three** questions.

Information for Candidates

The total mark for this paper is 50.

Question 1 is a practical exercise worth 18 marks.

Question 2 is a practical exercise worth 12 marks.

Question 3 is a planning exercise worth 20 marks.

Quality of written communication will be assessed in

Question 3(d)(ii).

Figures in brackets printed at the end of each question indicate the marks awarded to each question or part question. A Periodic Table of Elements (including some data) is provided.

1 Titration

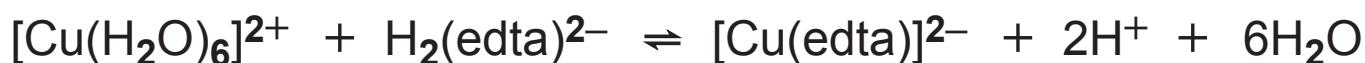
The percentage of copper in a coin can be determined by the following method:

- Accurately weigh the coin and react it with concentrated nitric acid in a beaker in a fume cupboard to form a solution of copper(II) ions.
- Place the mixture into a 250 cm^3 volumetric flask and make up to the mark with deionised water.
- Use a pipette and safety filler to transfer 25.0 cm^3 of this solution to a conical flask.
- Add pH 10 buffer solution to the conical flask.
- Titrate this solution with 0.5 mol dm^{-3} edta solution using murexide indicator.

(a) Copper reacts with nitric acid to produce copper(II) nitrate, nitrogen(IV) oxide and water.

(i) Write the equation for this reaction. [2 marks]

(ii) Why must this reaction be carried out in a fume cupboard? [1 mark]



(iii) State and explain a safety precaution when carrying out this reaction (other than safety goggles and the use of a fume cupboard). [2 marks]

(b) A solution of copper(II) ions reacts with edta according to the following equation:

(i) Using this equation explain the role of the buffer solution when carrying out an edta titration.
[2 marks]

(ii) State the colour change observed for Eriochrome Black T at the end point of an edta titration. Suggest why Eriochrome Black T is not used when titrating a solution of copper(II) ions with edta. [2 marks]

(c) The results below were recorded when the experiment was carried out using a coin of mass 7.0 g. Complete the table and calculate the percentage of copper in the coin. [6 marks]

	initial burette reading (cm ³)	final burette reading (cm ³)	titre (cm ³)
rough	0.0	20.1	
1 st accurate	21.0	40.5	
2 nd accurate	0.0	19.7	

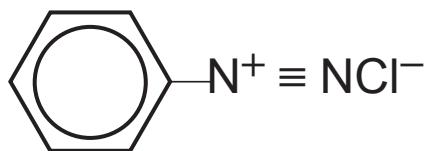
(d) Describe a chemical test for copper(II) ions. [3 marks]

2 Observation/Deduction

(a) The following tests are carried out on a solid sample of hydrated manganese(II) chloride, labelled **X**. Write the expected observations in the table below.

Test	Observations	Deductions
Make a solution of X in a beaker of deionised water.		
1 Add 5 drops of sodium hydroxide solution to a test tube one quarter filled with the solution of X .	[3 marks]	confirms Mn²⁺ ions
2 Add 5 drops of dilute nitric acid and 5 drops of silver nitrate solution to a test tube one quarter filled with the solution of X . Add 5 cm ³ of dilute ammonia solution to the test tube.	[1 mark] [1 mark]	confirms Cl⁻ ions confirms Cl⁻ ions
3 Place a spatula measure of solid X in a dry boiling tube and heat gently over a blue Bunsen burner flame.	[1 mark]	confirms solid is hydrated

(b) (i) The following observations were recorded for a sample of an organic solid, Y. One molecule of Y contains three carbon atoms. Complete the deductions column in the table below.


Test	Observations	Deductions
1 Make a solution of a spatula measure of Y in a beaker of deionised water.	colourless solution	soluble in water
2 Add 2 cm ³ of copper(II) sulfate solution to 2 cm ³ of the solution of Y.	dark blue solution	[1 mark]
3 Shine polarised light through the solution produced in Test 1 .	plane of polarisation is rotated	[1 mark]
4 Add a small spatula measure of solid Y to a test tube one quarter filled with sodium carbonate solution.	fizzing	[1 mark]
5 Use melting point apparatus to determine the melting point of Y.	melts at 258 °C	[1 mark]

**(ii) To which homologous series does Y belong?
[1 mark]**

(iii) Draw the structure of Y. [1 mark]

3 Benzenediazonium chloride can be produced from benzene via nitrobenzene, $C_6H_5NO_2$, and phenylamine, $C_6H_5NH_2$.

benzenediazonium chloride

(a) Nitrobenzene is formed when benzene is heated under reflux with an aqueous nitrating mixture which is formed **in situ**. The mixture must be vigorously stirred throughout.

(i) Suggest what is meant by the term **in situ**.
[1 mark]

(ii) Name the reagents required to form the nitrating mixture **in situ** and write an equation for its formation. [2 marks]

(iii) After heating the reaction mixture under reflux the crude liquid product is separated. Why is this crude product then added to sodium carbonate solution?
[1 mark]

(b) Phenylamine is produced from the reduction of nitrobenzene.

(i) Name the reagents used to reduce nitrobenzene to phenylammonium chloride. [2 marks]

(ii) How is phenylamine obtained from phenylammonium chloride? [1 mark]

(iii) If the percentage yield for the reduction of nitrobenzene to phenylamine is 60% what volume of nitrobenzene (density 1.2 g cm^{-3}) is required to produce 11.16g of phenylamine? [4 marks]

(c) Phenylamine is then converted to benzenediazonium chloride by reaction with nitrous acid. Name the reagents used to form nitrous acid. [2 marks]

(d) The benzenediazonium ion reacts with water above 10 °C. The volume of nitrogen produced can be monitored in order to determine the rate of the reaction.

(i) Write an equation for the reaction of the benzenediazonium ion with water. [2 marks]

(ii) Explain how you could measure the volume of nitrogen produced and how you could use your measurements to determine the rate of reaction with respect to nitrogen. [3 marks]

Quality of written communication [2 marks]

THIS IS THE END OF THE QUESTION PAPER

For Examiner's use only		
Question Number	Examiner Mark	Remark
1		
2		
3		
Total Marks		

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

Periodic Table of the Elements

For the use of candidates taking
Advanced Subsidiary and Advanced Level
Chemistry Examinations

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

gce A/AS examinations
chemistry
(advanced)

I	II	THE PERIODIC TABLE OF ELEMENTS												III	IV	V	VI	VII	0
1 H Hydrogen		One mole of any gas at 20°C and a pressure of 1 atmosphere (10 ⁵ Pa) occupies a volume of 24 dm ³ . Planck Constant = 6.63 × 10 ⁻³⁴ Js Gas Constant = 8.31 J mol ⁻¹ K ⁻¹ Avogadro Constant = 6.02 × 10 ²³ mol ⁻¹												4 He Helium					
7 Li Lithium	9 Be Beryllium													2 He Neon					
23 Na Sodium	24 Mg Magnesium													11 B Boron	12 C Carbon	14 N Nitrogen	16 O Oxygen	19 F Fluorine	20 Ne Neon
39 K Potassium	40 Ca Calcium	45 Sc Scandium	48 Ti Titanium	51 V Vanadium	52 Cr Chromium	55 Mn Manganese	56 Fe Iron	59 Co Cobalt	59 Ni Nickel	64 Cu Copper	65 Zn Zinc	70 Ga Gallium	73 Ge Germanium	75 As Arsenic	79 Se Selenium	80 Br Bromine	84 Kr Krypton		
19 Rb Rubidium	20 Sr Strontium	21 Y Yttrium	22 Zr Zirconium	23 Nb Niobium	24 Mo Molybdenum	25 Tc Technetium	26 Ru Ruthenium	27 Rh Rhodium	28 Pd Palladium	29 Ag Silver	30 Cd Cadmium	31 In Indium	32 Sn Tin	33 Sb Antimony	34 Te Tellurium	35 I Iodine	36 Xe Xenon		
37 Cs Caesium	38 Ba Barium	39 La Lanthanum	40 Hf Hafnium	41 Ta Tantalum	42 W Tungsten	43 Re Rhenium	44 Os Osmium	45 Ir Iridium	46 Pt Platinum	47 Au Gold	48 Hg Mercury	49 Tl Thallium	50 Pb Lead	51 Bi Bismuth	52 Po Polonium	53 At Astatine	54 Rn Radon		
55 Fr Francium	56 Ra Radium	57 Ac Actinium																	

* 58–71 Lanthanum series
† 90–103 Actinium series

a = relative atomic mass (approx.)
x = atomic symbol
b = atomic number

140 Ce Cerium	141 Pr Praseodymium	144 Nd Neodymium	147 Pm Promethium	150 Sm Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	162 Dy Dysprosium	165 Ho Holmium	167 Er Erbium	169 Tm Thulium	173 Yb Ytterbium	175 Lu Lutetium
58 Th Thorium	59 Pa Protactinium	60 U Uranium	61 Np Neptunium	62 Pu Plutonium	63 Am Americium	64 Cm Curium	65 Bk Berkelium	66 Cf Californium	67 Es Einsteinium	68 Fm Fermium	69 Md Mendelevium	70 No Nobelium	71 Lr Lawrencium