

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2018

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Chemistry

Assessment Unit AS 2

assessing

Further Physical and Inorganic Chemistry and
an Introduction to Organic Chemistry

MV18

[SCH22]

FRIDAY 25 MAY, MORNING

Time

1 hour 30 minutes, plus your additional time allowance.

Instructions to Candidates

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer **all fourteen** questions.

Answer **all ten** questions in **Section A**. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.

Answer **all four** questions in **Section B**. **You must answer the questions in the spaces provided.**

Do not write on blank pages.

Complete in black ink only.

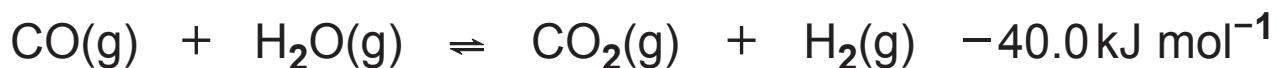
Information for Candidates

The total mark for this paper is 90.

Quality of written communication will be assessed in
Question 14(a)(ii).

In Section A all questions carry equal marks, i.e. **one** mark for each question.

In Section B the figures in brackets printed at the end of each question indicate the marks awarded to each question or part question.


A Periodic Table of Elements, containing some data, is included with this question paper.

Section A – Multiple Choice

Select the correct response in each case and mark its code letter by connecting the dots as illustrated on the answer sheet.

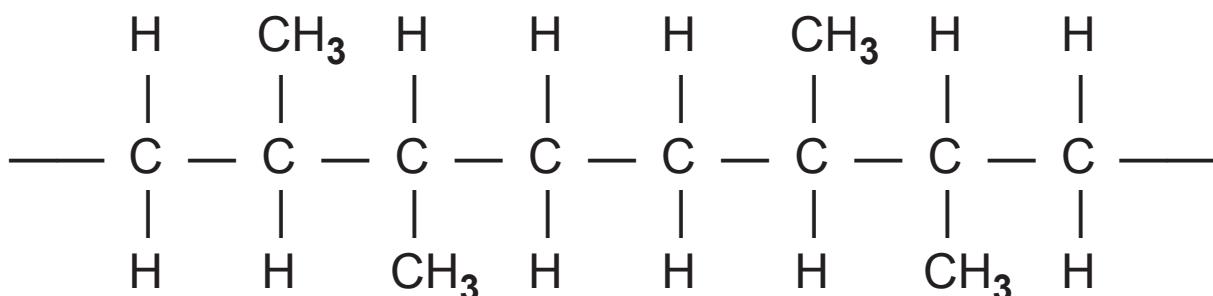
Each multiple choice question is worth 1 mark.

1 Carbon monoxide reacts with steam as follows:

Which change will shift the position of equilibrium to the right-hand side of the equation?

- A Decrease in pressure
- B Decrease in temperature
- C Increase in pressure
- D Increase in temperature

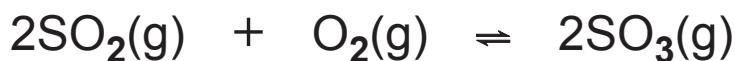
2 Which compound has the highest boiling point?


- A Butan-1-ol
- B Butan-2-ol
- C 2-methylpropan-2-ol
- D Pentane

3 Which of the following molecules can show a strong absorption peak at 1750 cm^{-1} in an infrared spectrum?

A C_4H_8
B C_4H_{10}
C $\text{C}_4\text{H}_8\text{O}$
D $\text{C}_4\text{H}_{10}\text{O}$

4 Neutralisation of 25.0 cm^3 of 2.0 mol dm^{-3} sodium hydroxide by 50.0 cm^3 of 1.0 mol dm^{-3} hydrochloric acid resulted in an 8.0°C increase in temperature.
The enthalpy of neutralisation for this reaction is
A -16.8 kJ mol^{-1} .
B -25.2 kJ mol^{-1} .
C -33.6 kJ mol^{-1} .
D -50.4 kJ mol^{-1} .


5 Part of a polymer chain is shown below.

Which monomer produces this polymer?

- A But-1-ene
- B But-2-ene
- C Methylpropene
- D Propene

6 Sulfur trioxide is produced by the reversible reaction between sulfur dioxide and oxygen.

What are the units of the equilibrium constant, K_c , for the forward reaction?

- A mol dm^{-3}
- B $\text{mol}^{-1} \text{dm}^3$
- C $\text{mol}^2 \text{dm}^{-6}$
- D $\text{mol}^{-2} \text{dm}^6$

7 Ethanoic acid can be produced by the oxidation of butane.

The atom economy for ethanoic acid is

- A 22%.
- B 52%.
- C 67%.
- D 87%.

8 Which statement correctly describes the boiling points of fluoroethane and iodoethane?

- A Fluoroethane has a higher boiling point because it forms hydrogen bonds.
- B Fluoroethane has a higher boiling point because the C-F bond is stronger than the C-I bond.
- C Fluoroethane has a lower boiling point because it has weaker van der Waals' forces between the molecules.
- D Fluoroethane has a lower boiling point because the C-F bond is more polar than the C-I bond.

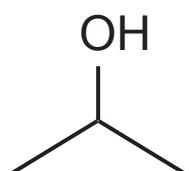
9 The table shows standard enthalpy changes of formation.

compound	$\text{NH}_4\text{NO}_3(\text{s})$	$\text{H}_2\text{O}(\text{g})$	$\text{CO}_2(\text{g})$
$\Delta H_f / \text{kJ mol}^{-1}$	-366	-242	-394

Which is the standard enthalpy change for the following reaction?

- A -270 kJ mol^{-1}
- B $+270 \text{ kJ mol}^{-1}$
- C $+630 \text{ kJ mol}^{-1}$
- D -630 kJ mol^{-1}

10 The first reaction that occurs when a car airbag is set off is:


When 3.25 g of NaN_3 decomposes

- A 1.80 dm^3 of nitrogen is formed.
- B 2.30 g of sodium is formed.
- C 3.60 dm^3 of nitrogen is formed.
- D 5.35 g of products are formed.

Section B

Answer all four questions in this section.

11 Isopropyl alcohol is used as a hand sanitiser and as a cleaning agent for electronic equipment.

isopropyl alcohol

(a) Give the IUPAC name for isopropyl alcohol. [1 mark]

(b) (i) Propan-1-ol is a **structural isomer** of isopropyl alcohol. Explain this term. [2 marks]

(ii) Ethyl methyl ether ($\text{CH}_3\text{CH}_2\text{OCH}_3$) is a structural isomer of isopropyl alcohol.

Explain, using intermolecular forces, why the boiling point of this isomer is lower than isopropyl alcohol. [3 marks]

(c) Isopropyl alcohol can be oxidised using acidified potassium dichromate(VI).

(i) Draw the skeletal formula of the organic product formed. [1 mark]

(ii) Name the type of compound formed. [1 mark]

(iii) Explain how infrared spectroscopy could be used to show that the oxidation reaction was complete.

[1 mark]

(d) Oxidation of 1.50 g of isopropyl alcohol gives 1.0 g of the organic product. Calculate the percentage yield of this reaction. [3 marks]

(e) Isopropyl alcohol is completely soluble in water.

(i) Explain why isopropyl alcohol is soluble in water.
[2 marks]

(ii) Suggest why the addition of sodium chloride to an aqueous solution of isopropyl alcohol causes the alcohol to become less soluble. [1 mark]

BLANK PAGE

(Questions continue overleaf)

12 Calcium is present in teeth in the form of calcium phosphate. This salt does not react with water although the element calcium does react forming a gas.

(a) Write the formula of calcium phosphate. [1 mark]

(b) (i) Write an equation for the reaction of calcium with water. [2 marks]

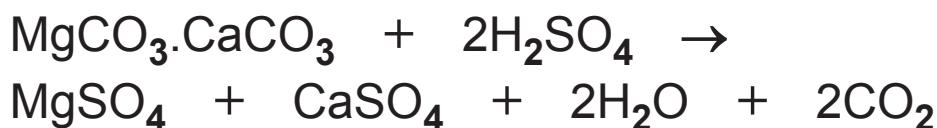
(ii) Explain why, using the same mass of strontium in place of calcium, the volume of gas produced when strontium reacts with water is less under the same conditions. [1 mark]

(iii) Suggest another difference that would be observed in the reaction with water when strontium is used in place of calcium. Explain your answer. [2 marks]

(c) The Group II metal oxides can be formed from the metal hydroxides.

(i) How would you convert calcium hydroxide to calcium oxide? [1 mark]

(ii) State and explain the trend in thermal stability of the Group II hydroxides as the Group is descended.
[3 marks]



(d) What chemical property of magnesium oxide makes it suitable for indigestion remedies? [1 mark]

(e) Magnesium sulfate is an important compound in horticulture. Industrially, the sulfates of magnesium and calcium are produced by reacting dolomite rock with excess sulfuric acid.

(i) Other than a temperature change, suggest **two** observations during this reaction. [2 marks]

(ii) Compare the solubility of magnesium sulfate with calcium sulfate in water. [1 mark]

(iii) The solubility of magnesium sulfate at two temperatures is given in the table below. In a batch process, a saturated solution of magnesium sulfate at 70 °C contained 100 tonnes of water. Use the table to calculate the mass of solid magnesium sulfate obtained when this solution is cooled to 20 °C. [2 marks]

temperature / °C	solubility / g per 100 g of water
20	35.1
70	59.2

(f) 2.50 g of hydrated magnesium sulfate crystals ($\text{MgSO}_4 \cdot x\text{H}_2\text{O}$) were heated to constant mass. The anhydrous solid has a mass of 1.22 g. Calculate the value of x and hence deduce the formula for the hydrated salt. [3 marks]

BLANK PAGE

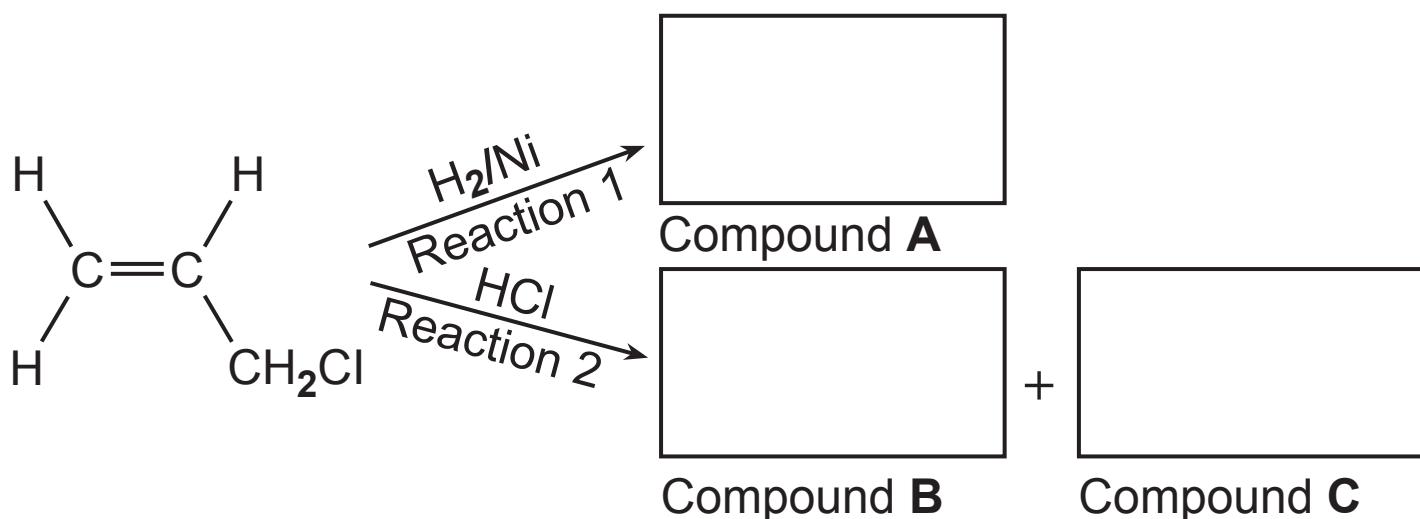
(Questions continue overleaf)

13 Propene is an important building block for a large number of chemicals. At low temperatures, propene will react with chlorine in an electrophilic addition reaction.

(a) (i) Explain the term **electrophile**. [2 marks]

(ii) Draw a flow scheme to show the mechanism for the reaction between propene and chlorine using curly arrows. [4 marks]

(b) At 500 °C in the presence of ultraviolet light, propene will react with chlorine in a similar way to the reaction of propane with chlorine radicals. The product formed is allyl chloride ($\text{CH}_2=\text{CHCH}_2\text{Cl}$).


Outline the mechanism of the reaction between propene and chlorine giving equations for the initiation, propagation and termination steps. [4 marks]

Initiation equation _____

Propagation equations _____

Termination equation _____

(c) (i) Two reactions of allyl chloride are shown. Fill in the structures of Compounds **A**, **B** and **C**. More of compound **B** is formed than compound **C**. [3 marks]

(ii) Explain why compounds **B** and **C** are not formed in equal amounts. [2 marks]

(iii) Compound **B** reacts slowly in humid conditions to form compound **D** which contains the following percentage masses: C, 40.0%; H, 7.0%; O, 53.0%. The relative formula mass of the compound is 90. Deduce the molecular formula of compound **D**. [3 marks]

(d) Allyl chloride will undergo an hydrolysis reaction with aqueous sodium hydroxide similar to halogenoalkanes.

(i) Draw the structural formula of the organic product formed in this reaction. Show **all** the bonds present. [2 marks]

(ii) Name the inorganic product formed during this hydrolysis reaction. [1 mark]

(e) Allyl chloride has a structural isomer which exists as geometrical isomers.
Draw and label these geometrical isomers. [3 marks]

(f) Allyl chloride is highly flammable. When it burns, one of the products formed is a corrosive gas.

(i) Define the term **molar gas volume**. [1 mark]

(ii) 1.50 g of this corrosive gas occupies a volume of 0.986 dm^3 at 293K and 1 atmosphere pressure. Use this information to calculate the relative molecular mass of the gas and suggest its identity. [3 marks]

14 Two million tonnes of ethanol are produced each year by the direct hydration of ethene using a phosphoric acid catalyst at 300 °C and 6000 kPa.

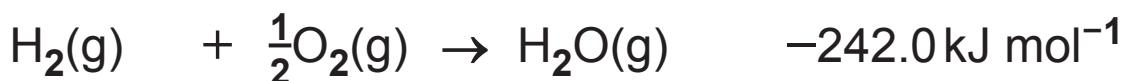
(a) (i) Describe how a catalyst increases the rate of a reaction. [2 marks]

(ii) State and explain the **general** conditions of temperature and pressure required to give a high yield of ethanol. Explain how a compromise between equilibrium yield and the reaction rate may influence the conditions of temperature and pressure used. [6 marks]

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

(b) Ethanol is a liquid at room temperature. It is increasingly used as a fuel.

(i) Give the equation, including state symbols, for the standard molar enthalpy of formation of ethanol.
[2 marks]


(ii) Suggest why this standard enthalpy change cannot be measured directly. [1 mark]

(iii) Using the enthalpy changes below, calculate the enthalpy change of formation of gaseous ethanol.
[3 marks]

(c) (i) Give the equation for the standard enthalpy of combustion of ethanol. [2 marks]

(ii) Using bond enthalpies explain why enthalpy changes of combustion are negative. [2 marks]

THIS IS THE END OF THE QUESTION PAPER

For Examiner's use only	
Question Number	Marks
Section A	
1–10	
Section B	
11	
12	
13	
14	
Total Marks	

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

General Information

1 tonne = 10^6 g

1 metre = 10^9 nm

One mole of any gas at 293 K and a pressure of 1 atmosphere (10^5 Pa) occupies a volume of 24 dm³

Avogadro Constant = 6.02×10^{23} mol⁻¹

Planck Constant = 6.63×10^{-34} Js

Specific Heat Capacity of water = 4.2 J g⁻¹ K⁻¹

Speed of Light = 3×10^8 ms⁻¹

Characteristic absorptions in IR spectroscopy

Wavenumber/cm ⁻¹	Bond	Compound
550–850	C–X (X = Cl, Br, I)	Haloalkanes
750–1100	C–C	Alkanes, alkyl groups
1000–1300	C–O	Alcohols, esters, carboxylic acids
1450–1650	C=C	Arenes
1600–1700	C=C	Alkenes
1650–1800	C=O	Carboxylic acids, esters, aldehydes, ketones, amides, acyl chlorides
2200–2300	C≡N	Nitriles
2500–3200	O–H	Carboxylic acids
2750–2850	C–H	Aldehydes
2850–3000	C–H	Alkanes, alkyl groups, alkenes, arenes
3200–3600	O–H	Alcohols
3300–3500	N–H	Amines, amides

Proton Chemical Shifts in Nuclear Magnetic Resonance Spectroscopy

(relative to TMS)

Chemical Shift	Structure	
0.5–2.0	–CH	Saturated alkanes
0.5–5.5	–OH	Alcohols
1.0–3.0	–NH	Amines
2.0–3.0	–CO–CH	Ketones
	–N–CH	Amines
	C ₆ H ₅ –CH	Arene (aliphatic on ring)
2.0–4.0	X–CH	X = Cl or Br (3.0–4.0) X = I (2.0–3.0)
4.5–6.0	–C=CH	Alkenes
5.5–8.5	RCONH	Amides
6.0–8.0	–C ₆ H ₅	Arenes (on ring)
9.0–10.0	–CHO	Aldehydes
10.0–12.0	–COOH	Carboxylic acids

These chemical shifts are concentration and temperature dependent and may be outside the ranges indicated above.

© CCEA 2017

COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT

29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG

Tel: +44 (0)28 9026 1200 Fax: +44 (0)28 9026 1234

Email: info@ccea.org.uk Web: www.ccea.org.uk

New
Specification

Data Leaflet

Including the Periodic Table of the Elements

For the use of candidates taking
Advanced Subsidiary and
Advanced Level Examinations

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations

gce a/as examinations

chemistry

For first teaching from September 2016
For first award of AS Level in Summer 2017
For first award of A Level in Summer 2018
Subject Code: 1110

I
II

THE PERIODIC TABLE OF ELEMENTS

Group

III
IV
V
VI
VII
0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H Hydrogen																	4 He Helium
7 Li Lithium	9 Be Beryllium																2 Ne Neon
23 Na Sodium	24 Mg Magnesium																10 Ar Argon
39 K Potassium	40 Ca Calcium	45 Sc Scandium	48 Ti Titanium	51 V Vanadium	52 Cr Chromium	55 Mn Manganese	56 Fe Iron	59 Co Cobalt	59 Ni Nickel	64 Cu Copper	65 Zn Zinc	70 Ga Gallium	73 Ge Germanium	75 As Arsenic	79 Se Selenium	80 Br Bromine	84 Kr Krypton
85 Rb Rubidium	88 Sr Strontium	89 Y Yttrium	91 Zr Zirconium	93 Nb Niobium	96 Mo Molybdenum	98 Tc Technetium	101 Ru Ruthenium	103 Rh Rhodium	106 Pd Palladium	108 Ag Silver	112 Cd Cadmium	115 In Indium	119 Sn Tin	122 Sb Antimony	128 Te Tellurium	127 I Iodine	131 Xe Xenon
133 Cs Caesium	137 Ba Barium	139 La* Lanthanum	178 Hf Hafnium	181 Ta Tantalum	184 W Tungsten	186 Re Rhenium	190 Os Osmium	192 Ir Iridium	195 Pt Platinum	197 Au Gold	201 Hg Mercury	204 Tl Thallium	207 Pb Lead	209 Bi Bismuth	210 Po Polonium	210 At Astatine	222 Rn Radon
223 Fr Francium	226 Ra Radium	227 Ac[†] Actinium	261 Rf Rutherfordium	262 Db Dubnium	266 Sg Seaborgium	264 Bh Bohrium	277 Hs Hassium	268 Mt Meitnerium	271 Ds Darmstadtium	272 Rg Roentgenium	285 Cn Copernicium						

* 58 – 71 Lanthanum series

† 90 – 103 Actinium series

a = relative atomic mass (approx)
x = atomic symbol
b = atomic number

a
X
b

140 Ce Cerium	141 Pr Praseodymium	144 Nd Neodymium	145 Pm Promethium	150 Sm Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	162 Dy Dysprosium	165 Ho Holmium	167 Er Erbium	169 Tm Thulium	173 Yb Ytterbium	175 Lu Lutetium
58 Th Thorium	59 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Berkelium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium