

Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2018

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Chemistry

Assessment Unit AS 1

assessing

Basic Concepts in Physical
and Inorganic Chemistry

MV18

[SCH12]

TUESDAY 22 MAY, MORNING

Time

1 hour 30 minutes, plus your additional time allowance.

Instructions to Candidates

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer **all fourteen** questions.

Answer **all ten** questions in **Section A**. Record your answers by marking the appropriate letter on the answer sheet provided. Use only the spaces numbered 1 to 10. Keep in sequence when answering.

Answer **all four** questions in **Section B**.

You must answer the questions in the spaces provided.

Do not write on blank pages.

Complete in black ink only.

Information for Candidates

The total mark for this paper is 90.

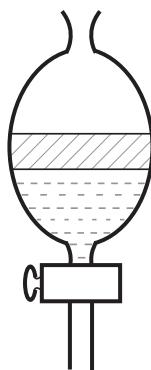
Quality of written communication will be assessed in
Question 13(a).

In Section A all questions carry equal marks, i.e. **one** mark for each question.

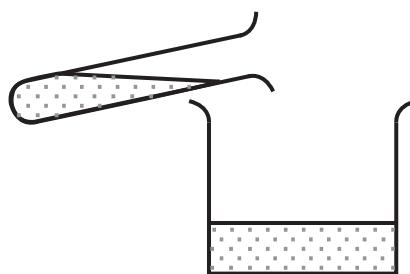
In Section B the figures in brackets printed at the end of each question indicate the marks awarded to each question or part question.

A Periodic Table of Elements, containing some data, is included with this question paper.

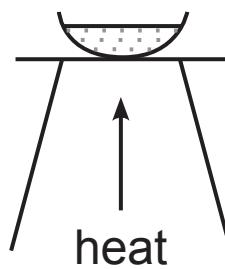
BLANK PAGE

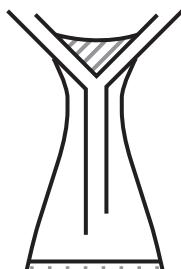

(Questions start overleaf)

Section A


For each of the following questions only one of the lettered responses (A–D) is correct.

Select the correct response in each case and mark its code letter by connecting the dots as illustrated on the answer sheet.


1 A solution of barium chloride was added to sodium sulfate solution.


P

Q

R

S

Which combination of methods should be used to obtain the precipitate and the other product as a solid?

- A P + Q
- B P + R
- C Q + S
- D R + S

2 Which species has the same electronic arrangement as a lithium ion, Li^+ ?

A Be^-

B B^{2+}

C H^+

D He

3 Sodium azide decomposes, in an airbag, to form sodium and nitrogen.

The sodium then reacts with potassium nitrate to form more nitrogen gas.

0.50 mol of sodium azide produces

A 0.50 mol of nitrogen.

B 0.75 mol of nitrogen.

C 0.80 mol of nitrogen.

D 2.00 mol of nitrogen.

4 Chlorine has two isotopes. How many peaks are there in the mass spectrum of chlorine?

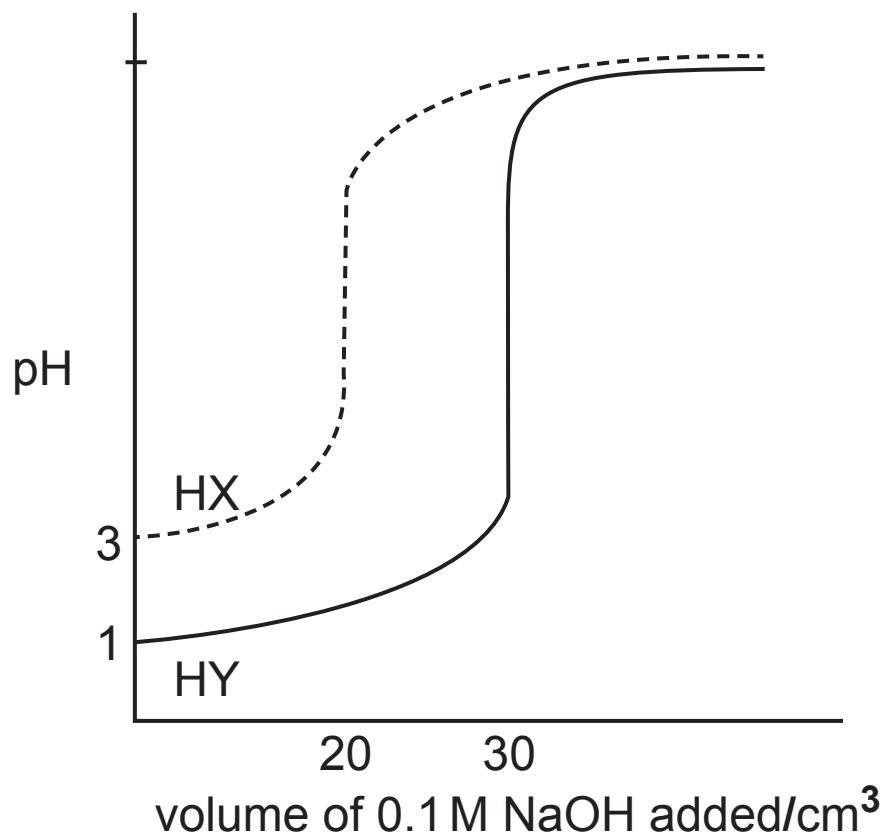
A 2

B 3

C 4

D 5

5 Which molecule is **not** planar?


A BF_3

B BeCl_2

C HCHO

D NCl_3

6 The curves shown below are for 25 cm³ of acids HX and HY when they are reacted with 0.1 M sodium hydroxide solution.

Compared to acid HY, the acid HX is

- A more concentrated and stronger.
- B more concentrated and weaker.
- C less concentrated and stronger.
- D less concentrated and weaker.

7 The largest mass of silver chloride precipitated is when excess silver ions are added to

- A 25.0 cm^3 of 0.80 M hydrochloric acid.
- B 30.0 cm^3 of 0.30 M iron(III) chloride solution.
- C 50.0 cm^3 of 0.20 M magnesium chloride solution.
- D 50.0 cm^3 of 0.50 M sodium chloride solution.

8 On melting, covalent bonds are broken in

- A bromine.
- B diamond.
- C sodium chloride.
- D sulfur(IV) oxide.

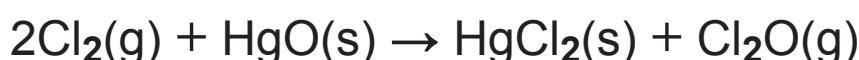
9 Which of the following equations represents a redox reaction?

- A $\text{CaCO}_3 + \text{SiO}_2 \rightarrow \text{CaSiO}_3 + \text{CO}_2$
- B $3\text{Cl}_2 + 6\text{OH}^- \rightarrow 5\text{Cl}^- + \text{ClO}_3^- + 3\text{H}_2\text{O}$
- C $2\text{CrO}_4^{2-} + 2\text{H}^+ \rightarrow \text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O}$
- D $\text{HNO}_3 + 2\text{H}_2\text{SO}_4 \rightarrow \text{NO}_2^+ + \text{H}_3\text{O}^+ + 2\text{HSO}_4^-$

10 Which halide has the most covalent character?

A AlBr_3

B AlF_3


C MgBr_2

D MgF_2

Section B

Answer **all four** questions in this section

11 Chlorine monoxide is a brown-yellow gas with a boiling point of 4°C while chlorine has a boiling point of –34°C. The monoxide is formed when excess chlorine is passed over mercury(II) oxide.

The escaping gases are passed through a U-tube which is cooled to –30°C.

The chlorine monoxide condenses in the U-tube.

(a) (i) How could you test to show that chlorine is passing into the reaction tube? [2 marks]

(ii) What is the colour of chlorine? [1 mark]

(iii) Why is it important to limit the temperature of the U-tube to -30°C and not to have it lower than this temperature? [1 mark]

(iv) How could you show that it is a chloride which remains in the reaction tube? [3 marks]

(v) Mercury(II) oxide decomposes when heated to form oxygen and mercury. How could you show that there was no mercury(II) oxide left in the reaction tube at the end of the experiment? [3 marks]

(vi) Chlorine monoxide cannot be collected over water as it is very soluble in water, with a solubility of 143 g in 100 cm³ at room temperature and pressure. Explain how you could show that chlorine monoxide is very soluble in water. [4 marks]

(b) Chlorine monoxide slowly reacts with water to form hypochlorous acid

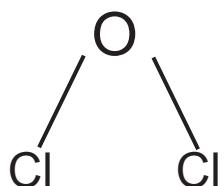
(i) Hypochlorous acid has a systematic name based on chloric acid. State the systematic name for hypochlorous acid. [1 mark]

(ii) Hypochlorous acid is a weak acid. Explain what is meant by the term **weak acid**. [2 marks]

(iii) Hypochlorous acid decomposes to give hydrochloric acid and oxygen.

Write the equation for this reaction. [2 marks]

(c) Chlorine monoxide obeys the octet rule.


(i) State the **octet rule**. [2 marks]

(ii) Draw the electronic structure of chlorine monoxide showing the outer electrons only. [2 marks]

(d) Chlorine monoxide has the following shape.

(i) Name the shape. [1 mark]

(ii) How many lone pairs are there in a chlorine monoxide molecule? [1 mark]

(iii) Explain why chlorine monoxide forms this shape. [2 marks]

(e) Fluorine also forms an oxide but this oxide is known as oxygen fluoride because fluorine has a greater electronegativity than oxygen. State how electronegativity changes across a Period and down a Group. [2 marks]

(f) It has been suggested that chlorine monoxide is the active ingredient in the treatment of water for drinking purposes. Name **two** substances that are used to treat water for drinking. [2 marks]

12 Ammonium dichromate is used in the “volcano” experiment. When heated, it decomposes to produce a vast amount of green chromium oxide and gases which push out the green “ash” to form a pile of “lava”.

The water forms steam because of the heat of the reaction.

(a) Write the equation for the reaction, **with state symbols**, for the reactants and products. [1 mark]

(b) Ammonium dichromate is very soluble in water. At room temperature 10.0 g of ammonium dichromate dissolve in 25.0 cm³ of water. The orange solution can be tested for the presence of ammonium ions.

(i) Calculate the solubility of the ammonium dichromate in g dm⁻³ to 3 significant figures. [1 mark]

(ii) Calculate the solubility of the ammonium dichromate in mol dm⁻³ to 3 significant figures. [1 mark]

(iii) Explain how you would show that the orange solution contains ammonium ions. [3 marks]

(c) The nitrogen given off in the reaction consists of two isotopes, nitrogen-14 and nitrogen-15. The percentage abundance of nitrogen-14 is 99.632%.

(i) Explain what is meant by the term **isotopes**. [2 marks]

(ii) Calculate the percentage abundance of nitrogen-15 given off. [1 mark]

(iii) Calculate the relative atomic mass of nitrogen to three decimal places. [2 marks]

(iv) Explain why there is a difference between the calculated relative atomic mass and the one provided in the data sheet. [1 mark]

(d) The dichromate ion is a very strong oxidising agent. The half-equation which shows its oxidising ability is:

(i) Use this equation to explain, in terms of oxidation numbers, why the dichromate ion is an oxidising agent. [2 marks]

(ii) Use this equation to explain, in terms of electrons, why the dichromate ion is an oxidising agent. [1 mark]

(e) Dichromates react with chlorides in the presence of concentrated sulfuric acid to produce chromyl chloride, CrO_2Cl_2 , which is a deep red liquid with a boiling point of 117 °C. Using this information, explain whether chromyl chloride is ionic or covalent. [2 marks]

13 (a) There are several types of structure which apply to chemical formulae.

The species present may be atoms, molecules or ions.

In each of the following examples describe which type of structure it is and which type of species is present.

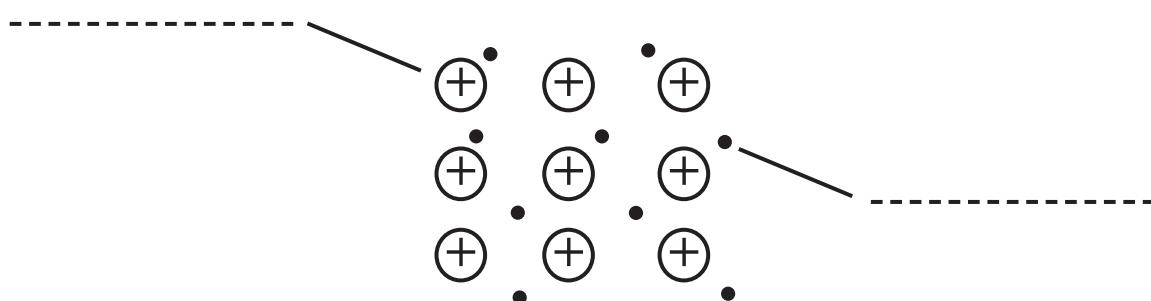
[6 marks]

sodium chloride

diamond

bromine

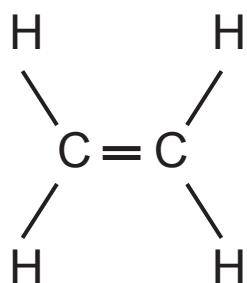
In this question you will be assessed on using your written communication skills including the use of specialist scientific terms.


(b) The different types of structure have different physical properties. State **four** physical properties that depend upon structure. [3 marks]

(c) The structure of sodium is shown below.

(i) Attach words to the labels shown. [2 marks]

(ii) Use this diagram to explain whether magnesium has a greater or lower conductivity than sodium. [2 marks]


(iii) Explain, using a labelled diagram, how you could compare the electrical conductivities of sodium and magnesium in the laboratory. [3 marks]

14 Ethene is a gas at room temperature and has a boiling point of -104°C at atmospheric pressure. It has a relative molecular mass of 28 which is approximately the same as the average relative molecular mass of air. It is a planar molecule which has the following structure:

(a) The ethene molecule contains single bonds and a double bond which are formed from s- and p-orbitals.

(i) Draw the shape of an s-orbital. [1 mark]

(ii) Draw the shape of a p-orbital. [1 mark]

(iii) Explain what is meant by the term **orbital**.
[2 marks]

(b) Ethene is a non-polar molecule. There are two reasons why ethene can be considered to be non-polar. One is based on electronegativity and the other is based on shape.

(i) What is meant by the term **electronegativity**?
[2 marks]

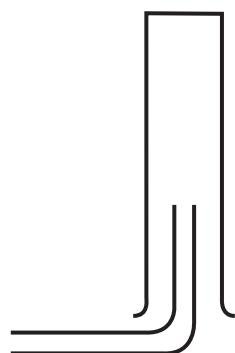
(ii) Explain why ethene is considered non-polar based on electronegativity. [1 mark]

(iii) Explain why ethene is considered non-polar based on shape. [1 mark]

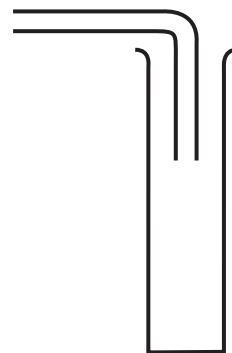
(c) Ethene contains a double bond. Other molecules can contain triple bonds.

(i) Draw the structure of the hydrocarbon ethyne which contains two carbon atoms and a triple bond. [1 mark]

(ii) Name an element which contains a triple bond. [1 mark]



(d) When ethene burns, carbon dioxide and water are produced. Describe how you would carry out a test for carbon dioxide and the result expected for a positive test. [2 marks]



(e) Gases can be collected by two different methods A or B depending on their relative molecular masses compared to air.

gas lighter than air

A

gas heavier than air

B

(i) Explain which method could be used to collect methane, CH_4 . [1 mark]

(ii) Explain which method could be used to collect chlorine. [1 mark]

(f) The boiling point of methane is -161°C . Explain why the boiling point of methane is lower than that of ethene.
[2 marks]

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
Section A	
1–10	
Section B	
11	
12	
13	
14	
Total Marks	

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

General Information

1 tonne = 10^6 g

1 metre = 10^9 nm

One mole of any gas at 293 K and a pressure of 1 atmosphere (10^5 Pa) occupies a volume of 24 dm³

Avogadro Constant = 6.02×10^{23} mol⁻¹

Planck Constant = 6.63×10^{-34} Js

Specific Heat Capacity of water = 4.2 J g⁻¹ K⁻¹

Speed of Light = 3×10^8 ms⁻¹

Characteristic absorptions in IR spectroscopy

Wavenumber/cm ⁻¹	Bond	Compound
550–850	C–X (X = Cl, Br, I)	Haloalkanes
750–1100	C–C	Alkanes, alkyl groups
1000–1300	C–O	Alcohols, esters, carboxylic acids
1450–1650	C=C	Arenes
1600–1700	C=C	Alkenes
1650–1800	C=O	Carboxylic acids, esters, aldehydes, ketones, amides, acyl chlorides
2200–2300	C≡N	Nitriles
2500–3200	O–H	Carboxylic acids
2750–2850	C–H	Aldehydes
2850–3000	C–H	Alkanes, alkyl groups, alkenes, arenes
3200–3600	O–H	Alcohols
3300–3500	N–H	Amines, amides

Proton Chemical Shifts in Nuclear Magnetic Resonance Spectroscopy

(relative to TMS)

Chemical Shift	Structure	
0.5–2.0	–CH	Saturated alkanes
0.5–5.5	–OH	Alcohols
1.0–3.0	–NH	Amines
2.0–3.0	–CO–CH	Ketones
	–N–CH	Amines
	C ₆ H ₅ –CH	Arene (aliphatic on ring)
2.0–4.0	X–CH	X = Cl or Br (3.0–4.0) X = I (2.0–3.0)
4.5–6.0	–C=CH	Alkenes
5.5–8.5	RCONH	Amides
6.0–8.0	–C ₆ H ₅	Arenes (on ring)
9.0–10.0	–CHO	Aldehydes
10.0–12.0	–COOH	Carboxylic acids

These chemical shifts are concentration and temperature dependent and may be outside the ranges indicated above.

© CCEA 2017

COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT

29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG

Tel: +44 (0)28 9026 1200 Fax: +44 (0)28 9026 1234

Email: info@ccea.org.uk Web: www.ccea.org.uk

New
Specification

Data Leaflet

Including the Periodic Table of the Elements

For the use of candidates taking
Advanced Subsidiary and
Advanced Level Examinations

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations

gce a/as examinations

chemistry

For first teaching from September 2016
For first award of AS Level in Summer 2017
For first award of A Level in Summer 2018
Subject Code: 1110

I
II

THE PERIODIC TABLE OF ELEMENTS

Group

III
IV
V
VI
VII
0

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H Hydrogen																	4 He Helium
7 Li Lithium	9 Be Beryllium																2 Ne Neon
23 Na Sodium	24 Mg Magnesium																10 Ar Argon
39 K Potassium	40 Ca Calcium	45 Sc Scandium	48 Ti Titanium	51 V Vanadium	52 Cr Chromium	55 Mn Manganese	56 Fe Iron	59 Co Cobalt	59 Ni Nickel	64 Cu Copper	65 Zn Zinc	70 Ga Gallium	73 Ge Germanium	75 As Arsenic	79 Se Selenium	80 Br Bromine	84 Kr Krypton
85 Rb Rubidium	88 Sr Strontium	89 Y Yttrium	91 Zr Zirconium	93 Nb Niobium	96 Mo Molybdenum	98 Tc Technetium	101 Ru Ruthenium	103 Rh Rhodium	106 Pd Palladium	108 Ag Silver	112 Cd Cadmium	115 In Indium	119 Sn Tin	122 Sb Antimony	128 Te Tellurium	127 I Iodine	131 Xe Xenon
133 Cs Caesium	137 Ba Barium	139 La* Lanthanum	178 Hf Hafnium	181 Ta Tantalum	184 W Tungsten	186 Re Rhenium	190 Os Osmium	192 Ir Iridium	195 Pt Platinum	197 Au Gold	201 Hg Mercury	204 Tl Thallium	207 Pb Lead	209 Bi Bismuth	210 Po Polonium	210 At Astatine	222 Rn Radon
223 Fr Francium	226 Ra Radium	227 Ac[†] Actinium	261 Rf Rutherfordium	262 Db Dubnium	266 Sg Seaborgium	264 Bh Bohrium	277 Hs Hassium	268 Mt Meitnerium	271 Ds Darmstadtium	272 Rg Roentgenium	285 Cn Copernicium						

* 58 – 71 Lanthanum series

† 90 – 103 Actinium series

a = relative atomic mass (approx)
x = atomic symbol
b = atomic number

a
X
b

140 Ce Cerium	141 Pr Praseodymium	144 Nd Neodymium	145 Pm Promethium	150 Sm Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	162 Dy Dysprosium	165 Ho Holmium	167 Er Erbium	169 Tm Thulium	173 Yb Ytterbium	175 Lu Lutetium
58 Th Thorium	59 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Berkelium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium