

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2014

Mathematics

Assessment Unit C2

assessing

Module C2: AS Core Mathematics 2

[AMC21]

FRIDAY 6 JUNE, AFTERNOON

TIME

1 hour 30 minutes, plus your additional time allowance.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer **all eight** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the **Mathematical Formulae and Tables booklet** is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

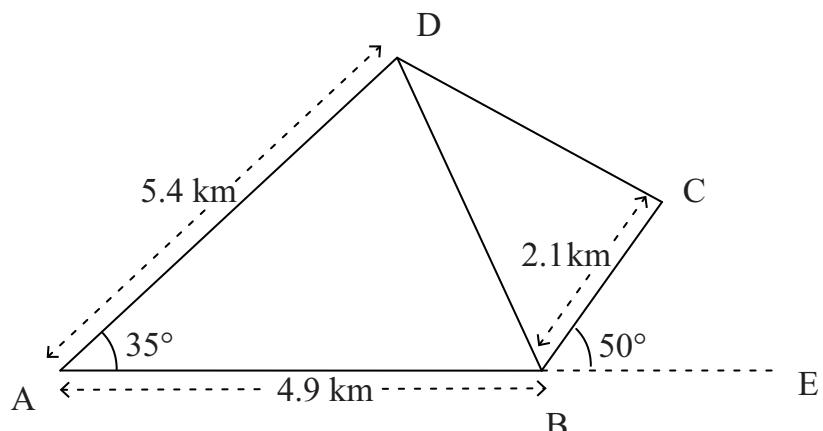
1 (a) The first five terms of a sequence are

$$\frac{2}{1}, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \frac{6}{25} \dots$$

(i) Write down the next term in this sequence. [1]

(ii) Write down, in terms of n , a formula for the n th term of this sequence. [2]

(iii) State whether this sequence converges or diverges or oscillates. [1]


(b) Find the coefficient of x^5 in the binomial expansion of

$$(3 - x)^7 \quad [4]$$

2 Find

$$\int \frac{16}{x^2} + x^{\frac{1}{3}} + 9x - 7 \, dx \quad [5]$$

3 A surveyor has drawn a diagram of an area of land. It is shown as ABCD in **Fig. 1** below.

Fig. 1

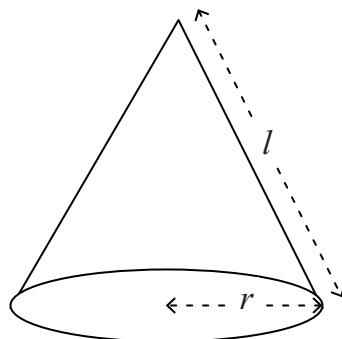
The points A, B and E lie along the same straight line.
He records the following measurements:

$$AB = 4.9 \text{ km}$$

$$AD = 5.4 \text{ km}$$

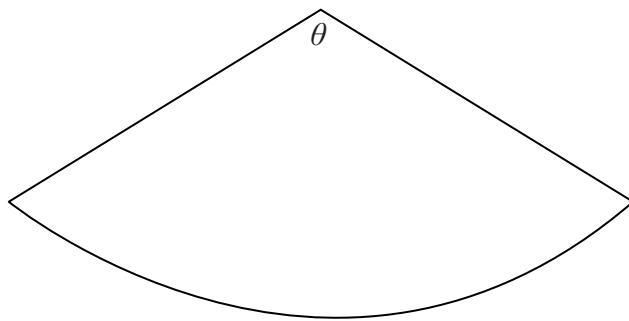
$$BC = 2.1 \text{ km}$$

$$\text{angle } DAB = 35^\circ$$


$$\text{angle } CBE = 50^\circ$$

(i) Find the length of DB. [2]

(ii) Find the angle ABD. [2]


(iii) Find the area of the land ABCD. [4]

4 (a) A right circular cone has a base radius of r and slant height l as shown in **Fig. 2** below.

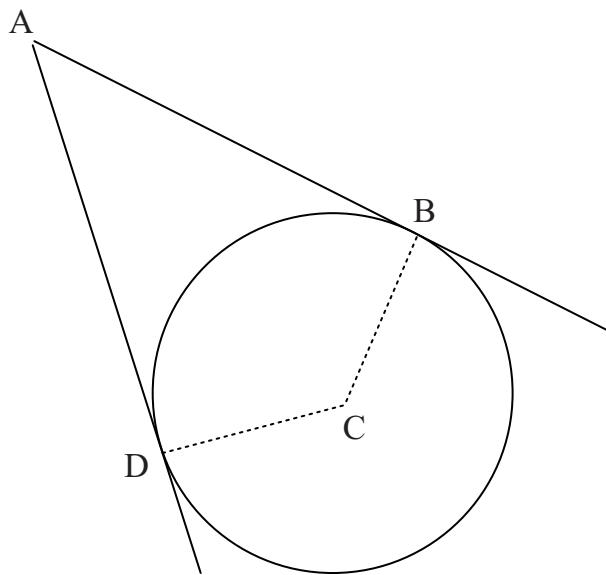
Fig. 2

The curved surface area of this cone can be unfolded to form the sector of a circle as shown in **Fig. 3** below.

Fig. 3

The radii of this sector subtend an angle of θ radians at its centre.

(i) Find θ , in terms of π , r and l . [3]


(ii) Hence show that the curved surface area of a cone is given by $\pi r l$. [2]

(b) The circle

$$x^2 - 6x + y^2 + 10y + 18 = 0$$

has its centre at the point C.

Tangents drawn from the point A (– 2, 4) meet the circle at the points B and D respectively, as shown in **Fig. 4** below.

Fig. 4

Find the area of the kite ABCD.

[7]

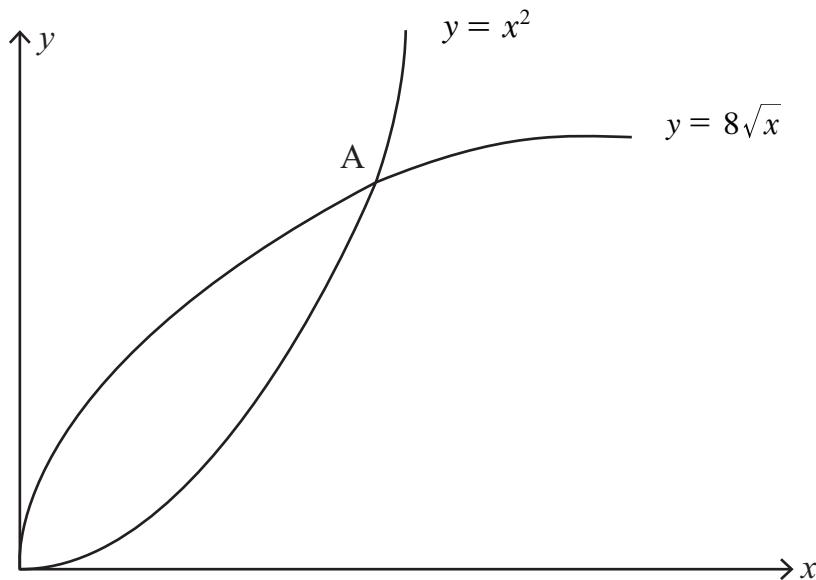
5 (a) A geometric progression has first term 100 and common ratio $\frac{3}{5}$

(i) Find the 16th term of this progression.

[2]

(ii) Find the sum to infinity of this progression.

[2]


(b) Prove that the sum of the first n terms of a geometric progression, with first term a and common ratio r , is

$$S_n = \frac{a(1 - r^n)}{1 - r} \quad [6]$$

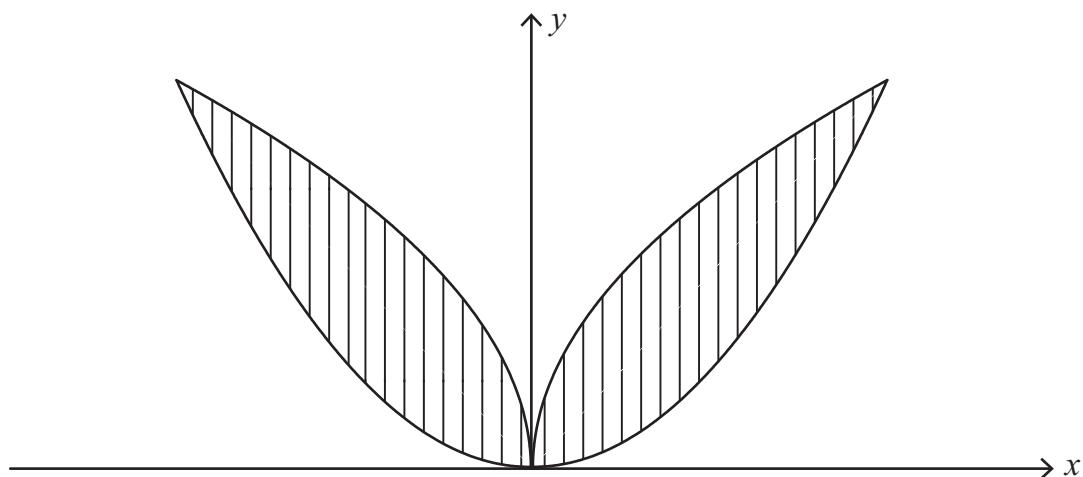
6 The graphs of the curves

$$y = x^2 \text{ and } y = 8\sqrt{x}$$

are shown in **Fig. 5** below.

Fig. 5

The curves cross at the point A.


(i) Find the coordinates of A.

[3]

A garden centre has created a logo by reflecting the area between the curves

$$y = x^2 \text{ and } y = 8\sqrt{x}$$

in the y-axis, as shown shaded in **Fig. 6** below.

Fig. 6

(ii) Find the area of the logo.

[7]

7 (a) Solve the equation

$$4 - \sin \theta = 6 \cos^2 \theta$$

for $0^\circ \leq \theta \leq 360^\circ$

[7]

(b) Prove the identity

$$\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta} \quad [5]$$

8 Solve the simultaneous equations

$$\begin{aligned} \log_4 x + \log_4 y &= 2 \\ \log_9 x - \log_9 y &= -\frac{1}{2} \end{aligned}$$

[10]

THIS IS THE END OF THE QUESTION PAPER
