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INFORMATION FOR CANDIDATES
The total mark for this paper is 75
Figures in brackets printed at the end of each question indicate 
the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is 
provided.
Throughout the paper the logarithmic notation used is ln z where 
it is noted that ln z ≡ loge z
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Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures
unless otherwise stated.

1 (i) Write

  

2 x – – 7
(5 –– x)(1 + x)

  in partial fractions. [6 marks]

 
 (ii) Hence find

  ∫ 2 x – – 7
(5 –– x)(1 + x)  dx    [4 marks]
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2 The points A and B have position vectors:
                   
             OA = 3i –– 4j
              
 and      OB = 7i + 5j

 relative to a fixed origin O.
  
 
 (i) Find 


AB. [2 marks]

 The point C has position vector
  
 OC = 3i –– 2j

 (ii) Find a vector equation of the line through C, parallel 
  to AB. [3 marks]

 (iii) Show that the point with position vector (11i + 16j) lies 
on this line. [4 marks]

3 Use the substitution u = 3x –– 5 to evaluate 

 

3

2
6x 3x – – 5 d5 dx     [9 marks]     [9 marks] 
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4 The curved surface of a glass bowl can be modelled by 
rotating the curve

 y = e x + 1

 between the lines x = 0 and x = 1 through 2π radians about 
the x-axis.

 (i) Find the maximum volume that the bowl can hold. 
  [7 marks]

 (ii) State one assumption made in the modelling. [1 mark]

 

5 At time t = 0 hours a small block of ice starts to melt.                                       
 The volume, V cm3, of the solid ice decreases with time, at 

a rate which is proportional  to the square root of the volume 
of ice remaining at that time.         

 This can be modelled by the differential equation

 dV
dt

 = k  √V     

 Initially the volume of ice is 64 cm3 and one hour later the 
volume of ice is 48 cm3                                                                                                                               

 If the ice started to melt at 12.00 (noon), find the time at 
which the ice has completely melted. [10 marks]
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6 The expression (7 sin x –– 24 cos x) can be written in the  form

 R sin (x –– a)

 where R is an integer and 0 < a < 
π
2 

 (i)   Find R and a.     [4 marks]
 

 (ii) Hence find

   1
(7 sin x – – 24 cos x)2

 dx    [3 marks]

7 The function f is defined as

 f: x → tan x      – π
4 < x < 

π
4

 

 
 (i) Write down the inverse function f –1 and state its domain 

and range. [4 marks]

 The function g is defined as

 g: x → → | | x |           |          xdR

 (ii) Find the composite function gf, stating its range. [4 marks]  

 (iii) Hence sketch the graph of y = gf(x)    [3 marks]                                  
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8 The parametric equations of a curve are

 x = 2t –– sin 2t    y = 4 cos t

 where π
2

 < t < 
3π3π
2 

 Find the exact coordinates of the point on the curve at 
which the gradient is √2      [11 marks]

THIS IS THE END OF THE QUESTION PAPER
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