

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
January 2013

Mathematics
Assessment Unit M1
assessing
Module M1: Mechanics 1

[AMM11]

WEDNESDAY 30 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer **all seven** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

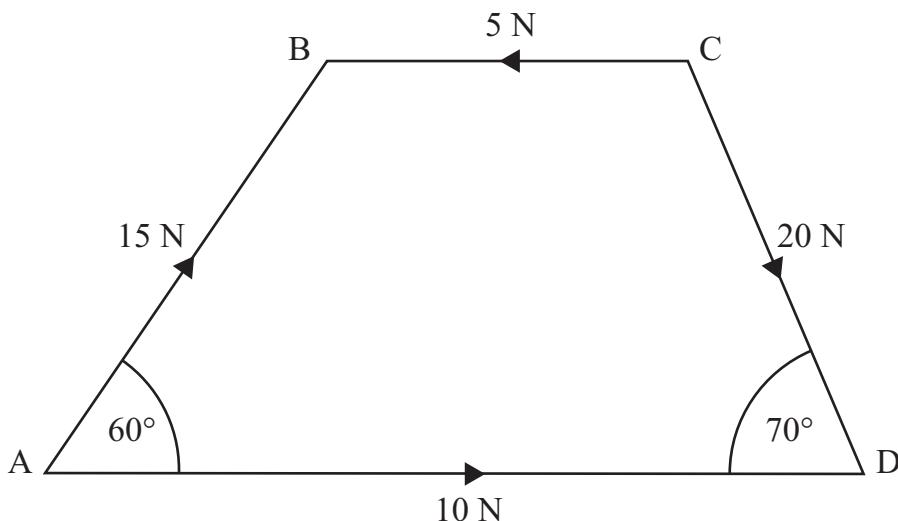
INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Answers should include diagrams where appropriate and marks may be awarded for them.

Take $g = 9.8 \text{ m s}^{-2}$, unless specified otherwise.


A copy of the **Mathematical Formulae and Tables booklet** is provided.

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 **Fig. 1** below shows four forces acting along the sides of a trapezium ABCD in which AD is parallel to BC.

Fig. 1

Find the magnitude of the resultant of these forces.

[8]

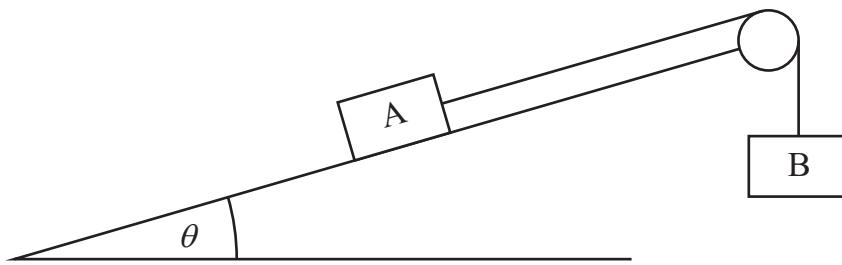
2 A train is travelling along a straight horizontal track with an acceleration of 0.1 m s^{-2}
 When the train passes a point A its velocity is 5 m s^{-1}
 When it passes a point B its velocity is 11 m s^{-1}

(i) Find the distance from A to B.

[3]

The mass of the train is 40000 kg and the resistance to its motion is 24000 N .

(ii) Find the tractive force produced by the train's engine.


[3]

3 A particle P of mass $2m$ kilograms is travelling in a straight line with speed $3u \text{ m s}^{-1}$ on a smooth horizontal surface. A second particle Q of mass $6m$ kilograms is travelling in the opposite direction with speed $4u \text{ m s}^{-1}$ along the same straight line. P and Q collide and after the collision P rebounds with speed $3u \text{ m s}^{-1}$

(i) Find, in terms of u , the velocity of Q after the collision. [5]

(ii) Find, in terms of m and u , the impulse exerted by P on Q. [3]

4 A block A of mass 6 kg is held at rest on a smooth plane inclined at an angle θ to the horizontal where $\sin \theta = \frac{1}{3}$. It is attached to a light inextensible string which passes over a fixed smooth light pulley to a block B of mass $m \text{ kg}$ which hangs freely in equilibrium as shown in **Fig. 2** below.

Fig. 2

(i) Draw a diagram showing all the external forces acting on the two blocks. [2]

(ii) Find the value of m . [5]

Block B is now replaced by a block C of mass 4 kg .
The system is released from rest and A moves up the plane.

(iii) Find the acceleration of the system. [5]

5 At time t seconds the acceleration $a \text{ m s}^{-2}$ of a particle, P, moving in a straight line, is given by

$$a = 24 - 6t$$

When $t = 0$, P passes through a point X, which has displacement 10 m from a fixed origin O, with velocity -36 m s^{-1}

(i) Find an expression for the velocity of P at any time t . [4]

(ii) Find the maximum velocity of P. [4]

(iii) Find the **distance** of P from O when its velocity is a maximum. [4]

6 At time $t = 0$ seconds Peter is driving along a straight horizontal road with constant speed 14 m s^{-1} and passes a road sign S.

Richard drives his car along the same road in the same direction with uniform deceleration 1 m s^{-2}

When $t = 4$, Richard passes S with speed 25 m s^{-1}

(i) Sketch a velocity–time diagram showing the motion of the two cars. [3]

Richard overtakes Peter at a point X.

At a later time Peter overtakes Richard at a point Y.

Find:

(ii) the values of t at X and Y; [8]

(iii) the distance from X to Y. [3]

7 **Fig. 3** below shows a uniform rod AB with the end B resting against a rough vertical wall. The coefficient of friction between the wall and the rod is μ . The rod is 2 m long and has mass 3 kg. The rod is kept in limiting equilibrium by a light inextensible string, one end of which is attached to the end A of the rod and the other to a point C on the wall 2 m above B. The angle ABC = 120°. The end B of the rod is about to slip down the wall.

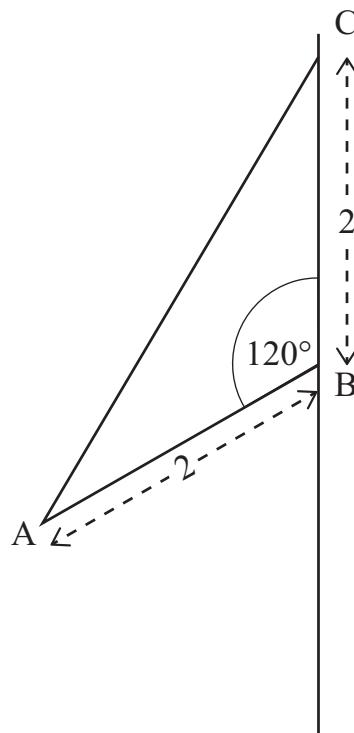


Fig. 3

(i) Draw a diagram showing all the external forces acting on the rod. [2]

(ii) By taking moments about C, show that the normal reaction at B is approximately 12.7 N. [5]

(iii) Find the value of μ . [8]

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.