



ADVANCED SUBSIDIARY (AS)  
General Certificate of Education  
2011

**Mathematics**  
**Assessment Unit C1**  
*assessing*  
**Module C1: AS Core Mathematics 1**  
**[AMC11]**



**THURSDAY 26 MAY, MORNING**

**TIME**

1 hour 30 minutes.

**INSTRUCTIONS TO CANDIDATES**

Write your Centre Number and Candidate Number on the Answer Booklet provided.  
Answer **all eight** questions.  
Show clearly the full development of your answers.  
Answers should be given to three significant figures unless otherwise stated.  
**You are not permitted to use any calculating aid in this paper.**

**INFORMATION FOR CANDIDATES**

The total mark for this paper is 75  
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.  
A copy of the **Mathematical Formulae and Tables booklet** is provided.

**Answer all eight questions.**

**Show clearly the full development of your answers.**

**Answers should be given to three significant figures unless otherwise stated.**

**You are not permitted to use any calculating aid in this paper.**

**1 The straight line**

$$y = 5 - 2x$$

crosses the  $x$ -axis at the point A.

**(i) Find the coordinates of A.**

[1]

The straight line

$$3x + 5y = 15$$

crosses the  $y$ -axis at the point B.

**(ii) Find the coordinates of B.**

[1]

**(iii) Find the equation of the line parallel to AB passing through the point (1, -5).**

[4]

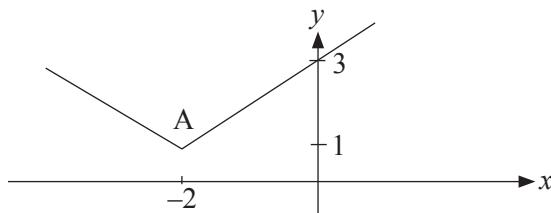
**2 Solve the simultaneous equations**

$$\begin{aligned}x + 2y + 3z &= 2 \\x - y + 6z &= 9 \\2x - y + 3z &= 13\end{aligned}$$

[7]

3 (a) Solve the equation

$$25^{x-1} = 5\sqrt{5}$$


[5]

(b) Simplify as far as possible

$$\frac{2+\sqrt{5}}{3-\sqrt{5}} + \frac{5}{3+\sqrt{5}}$$

[5]

(c) The graph of the function  $y = f(x)$  is sketched in **Fig. 1** below.



**Fig. 1**

Point A has coordinates  $(-2, 1)$ .

Sketch the graph of  $y = -f(x)$  clearly labelling the image of point A.

[2]

4 (a) Find the equation of the normal to the curve

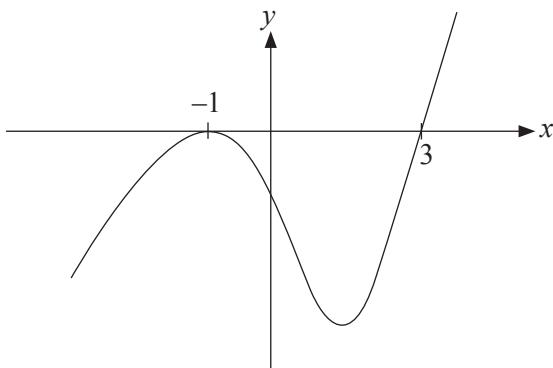
$$y = 4x^2 - 2x^3 - 1$$

at the point where  $x = 2$

[7]

(b) If

$$y = 8\sqrt{x}$$


show that

[5]

$$\left[ \frac{dy}{dx} \right]^2 + y \left[ \frac{d^2y}{dx^2} \right] = 0$$

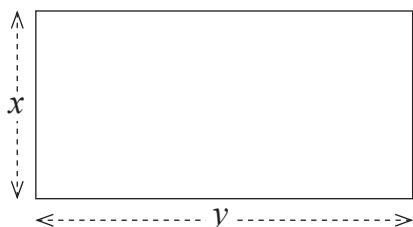
5 The diagram in **Fig. 2** below shows the curve with equation

$$y = (x + p)(x + q)^2$$



**Fig. 2**

(i) Write down the values of  $p$  and  $q$ .


[3]

The curve crosses the  $y$ -axis at C.

(ii) Find the coordinates of C.

[2]

6 The floor of a rectangular greenhouse has length  $x$  m and width  $y$  m, as shown in **Fig. 3** below.



**Fig. 3**

The floor has an area of  $16.5 \text{ m}^2$  and a perimeter of  $17 \text{ m}$ .

Form two equations and solve them to find the dimensions of the floor of the greenhouse.

[8]

7 Crisps are sold in packets in the shape of a **closed** cylinder, of radius  $r$  cm and height  $h$  cm. The surface area of the **closed** cylinder must be  $192\pi$  cm $^2$

(i) Write down an expression for  $h$  in terms of  $r$ . [3]

(ii) Show that the volume of the cylinder can be expressed as

$$V = 96\pi r - \pi r^3 \quad [3]$$

(iii) Find the dimensions of the cylinder which give the maximum volume. [7]

8 (a) Find the value of  $a$  for which

$$x^2 - 4x + a$$

is always positive. [4]

(b) Find the range of values  $k$  can take for

$$2x^2 + (k + 2)x - k = 0$$

to have two real distinct roots. [8]

---

**THIS IS THE END OF THE QUESTION PAPER**

---





