



ADVANCED  
General Certificate of Education  
2011

---

**Mathematics**  
Assessment Unit F3  
*assessing*  
Module FP3: Further Pure Mathematics 3  
[AMF31]



**THURSDAY 26 MAY, MORNING**

---

**TIME**

1 hour 30 minutes.

**INSTRUCTIONS TO CANDIDATES**

Write your Centre Number and Candidate Number on the Answer Booklet provided.  
Answer **all seven** questions.  
Show clearly the full development of your answers.  
Answers should be given to three significant figures unless otherwise stated.  
You are permitted to use a graphic or scientific calculator in this paper.

**INFORMATION FOR CANDIDATES**

The total mark for this paper is 75  
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.  
A copy of the **Mathematical Formulae and Tables booklet** is provided.  
Throughout the paper the logarithmic notation used is  $\ln z$  where it is noted that  $\ln z \equiv \log_e z$



**Answer all seven questions.**

**Show clearly the full development of your answers.**

**Answers should be given to three significant figures unless otherwise stated.**

**1 (i)** If  $x = 5 \cos \theta - 3$  show that

$$16 - 6x - x^2 = 25 \sin^2 \theta \quad [3]$$

**(ii)** Hence or otherwise show that

$$\int \frac{1}{\sqrt{16 - 6x - x^2}} \, dx = -\cos^{-1}\left(\frac{x+3}{5}\right) + c \quad [4]$$

**2 (i)** Using the exponential definitions of  $\cosh x$  and  $\sinh x$  prove that

$$2 \cosh 4x \cosh x \equiv \cosh 5x + \cosh 3x \quad [3]$$

**(ii)** Hence solve, for real values of  $x$ , the equation

$$\cosh 5x + \cosh 3x = 4 \cosh x$$

leaving your answers in logarithmic form.

[4]

3 (i) Sketch the curve  $y = \sinh^{-1} x$  [1]

(ii) Show that

$$\frac{d}{dx}(\sinh^{-1} x) = \frac{1}{\sqrt{1+x^2}} \quad [4]$$

(iii) Show that

$$\sinh^{-1} x \equiv \ln\left(x + \sqrt{1+x^2}\right) \quad [4]$$

(iv) Find, in fraction form, the exact solution to the equation

$$\sinh^{-1} \frac{3}{4} + \sinh^{-1} x = \sinh^{-1} \frac{4}{3} \quad [4]$$

4 A plane  $\Pi$  has vector equation

$$\mathbf{r} \cdot (2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = 5$$

(i) Find the shortest distance from the origin to the plane. [2]

The line  $L$  has Cartesian equation

$$\frac{x-2}{3} = \frac{y-5}{-2} = \frac{z+1}{5}$$

(ii) Find the coordinates of the point where the line  $L$  meets the plane  $\Pi$  [4]

(iii) Find the angle between the line  $L$  and the plane  $\Pi$  [5]

5 (i) Given that

$$I_n = \int_0^{\frac{\pi}{2}} x^n \cos x \, dx$$

show that for  $n \geq 2$

$$I_n = \left( \frac{\pi}{2} \right)^n - n(n-1) I_{n-2} \quad [6]$$

(ii) Hence evaluate, in terms of  $\pi$ ,

$$\int_0^{\frac{\pi}{2}} x^4 \cos x \, dx \quad [5]$$

6 (a) (i) Show that if

$$y = \sin^{-1} \sqrt{x} - \sqrt{x(1-x)} \quad |x| < 1$$

$$\text{then } \frac{dy}{dx} = \sqrt{\frac{x}{1-x}} \quad [5]$$

(ii) Hence or otherwise find the exact value of

$$\int_0^{\frac{1}{2}} \sqrt{\frac{x}{1-x}} \, dx \quad [2]$$

(b) Show that

$$\int_0^2 \frac{4-3x}{4+3x^2} \, dx = \frac{2\pi}{3\sqrt{3}} - \ln 2 \quad [6]$$

7 With reference to a fixed origin O the points A(4, 1, 3), B(-2, 7, 6) and C(5, -3, 2) determine the plane ABC.

(i) Find  $\overrightarrow{AB} \times \overrightarrow{AC}$  [4]

(ii) Hence or otherwise find, in the form  $\mathbf{r} \cdot \mathbf{n} = d$ , an equation of the plane ABC. [3]

The point D with position vector  $\overrightarrow{OD} = 11\mathbf{i} - 9\mathbf{j} + \lambda\mathbf{k}$  is in the plane ABC.

(iii) Find the value of  $\lambda$ . [2]

(iv) What kind of quadrilateral is ABCD? Justify your answer. [2]

(v) Find, in surd form, the area of the quadrilateral ABCD. [2]

**THIS IS THE END OF THE QUESTION PAPER**

---





