

ADVANCED
General Certificate of Education
2012

Mathematics
Assessment Unit F2
assessing
Module FP2: Further Pure Mathematics 2
[AMF21]

THURSDAY 31 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer **all seven** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the **Mathematical Formulae and Tables booklet** is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Show that

$$\sum_{k=1}^n (k-1)k(k+1) = \frac{1}{4}(n-1)n(n+1)(n+2) \quad [4]$$

2 Find, in radians, the general solution of the equation

$$6\sin\theta\cos\theta - 2\cos\theta + 3\sin\theta - 1 = 0 \quad [7]$$

3 (i) Using Maclaurin's theorem find a series expansion for $\ln(1+x)$ up to and including the term in x^5 [6]

(ii) Hence, find a series expansion for $\ln\left(\frac{1+x}{1-x}\right)$ up to and including the term in x^5 [4]

(iii) Using the expansion in part **(ii)** and substituting $x = \frac{2}{3}$, find an approximation for $\ln 5$ [2]

4 Find, in the form pe^{iq} , the roots of the equation

$$16z^4 = 81\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

and plot them on an Argand diagram.

[10]

5 (i) Use partial fractions to show that

$$\frac{5}{(2+x^2)(3+4x^2)} \equiv \frac{4}{3+4x^2} - \frac{1}{2+x^2} \quad [6]$$

(ii) Hence, solve the differential equation

$$\frac{dy}{dx} + \frac{y}{x} = \frac{5}{(2+x^2)(3+4x^2)} \quad [8]$$

6 (i) It is required to prove by mathematical induction that a proposition $P(n)$ is true for all **even** natural numbers n . It has been proved that

$$P(k) \Rightarrow P(k+2)$$

What else must be shown to complete the proof? [2]

(ii) Prove, for all **even** natural numbers n , that

$$\frac{d^n}{dx^n} \sin(3x) = (-1)^{\frac{n}{2}} 3^n \sin(3x) \quad [9]$$

7 The ellipse $\frac{x^2}{29^2} + \frac{y^2}{21^2} = 1$ has a general point $P(29 \cos \theta, 21 \sin \theta)$ and a focus F .

It is sketched in **Fig. 1** below:

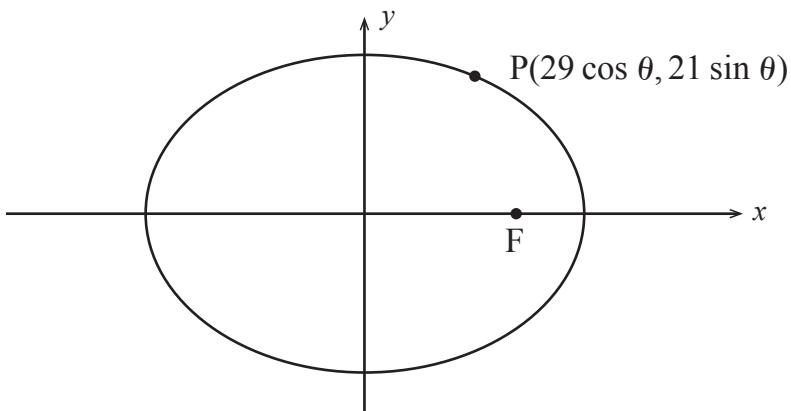


Fig. 1

(i) Show that the eccentricity of this ellipse is given by $e = \frac{20}{29}$ [2]

(ii) Show that the equation of the normal to the ellipse at P is

$$21y \cos \theta - 29x \sin \theta + 400 \sin \theta \cos \theta = 0 \quad [6]$$

The normal to the ellipse at P meets the x -axis at the point Q .

(iii) Show that the point Q is $\left(\frac{400}{29} \cos \theta, 0 \right)$. [2]

(iv) Hence, prove that $FQ = eFP$, where e is the eccentricity of the ellipse. [7]

THIS IS THE END OF THE QUESTION PAPER
