



ADVANCED  
General Certificate of Education  
2013

---

**Mathematics**

Assessment Unit C4

*assessing*

Module C4: Core Mathematics 4

**[AMC41]**



**THURSDAY 6 JUNE, MORNING**

---

**TIME**

1 hour 30 minutes.

**INSTRUCTIONS TO CANDIDATES**

Write your Centre Number and Candidate Number on the Answer Booklet provided.  
Answer **all eight** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

**INFORMATION FOR CANDIDATES**

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the **Mathematical Formulae and Tables booklet** is provided.

Throughout the paper the logarithmic notation used is  $\ln z$  where it is noted that  $\ln z \equiv \log_e z$

**Answer all eight questions.**

**Show clearly the full development of your answers.**

**Answers should be given to three significant figures unless otherwise stated.**

**1** The motion of a toy car on a race track can be modelled by the equations

$$x = 3 \cos t \quad \text{and} \quad y = \sin 2t$$

Find  $\frac{dy}{dx}$  when  $t = 2$  [5]

**2** **a** and **b** are two vectors where

$$\mathbf{a} = t\mathbf{i} + 5\mathbf{j} + \mathbf{k}$$

$$\mathbf{b} = 2t\mathbf{i} + t\mathbf{j} + 2\mathbf{k}$$

**(i)** State the value of  $t$  for which the vectors are parallel. [1]

**(ii)** Find the values of  $t$  for which the vectors are perpendicular. [6]

**3 (a) (i)** Use partial fractions to find  $A$  and  $B$  where

$$\frac{4}{x(2-x)} = \frac{A}{x} + \frac{B}{2-x} \quad [4]$$

**(ii)** Hence find

$$\int \frac{4}{2x-x^2} dx \quad [3]$$

**(b)** Use integration by parts to find

$$\int x e^{3x} dx \quad [5]$$

4 The area under the curve

$$y = 2\sqrt{x} + 1$$

between  $x = 0$  and  $x = 4$  is rotated through  $360^\circ$  about the  $x$ -axis.

Find the volume of the body so formed.

[7]

5 (a) Sketch the graph of  $y = \cos^{-1} x$ , stating its domain.

[3]

(b) Solve the equation

$$\sin(\theta + 30^\circ) - \cos(\theta + 60^\circ) = 1$$

where  $-180^\circ \leq \theta \leq 180^\circ$

[8]

6 The rate at which a body loses speed  $S \text{ m s}^{-1}$  as it travels through a resistive medium at time  $t$  seconds is proportional to the square of its speed at that time.

(i) Model this by a differential equation.

[2]

(ii) If its initial speed is  $100 \text{ m s}^{-1}$  and after 3 seconds its speed is  $60 \text{ m s}^{-1}$ , find how much longer it will take to reduce its speed to  $30 \text{ m s}^{-1}$

[9]

7 The function  $h$  is defined as

$$h(x) = \frac{x+2}{x-3} \quad x \in \mathbb{R} \quad x \neq 3$$

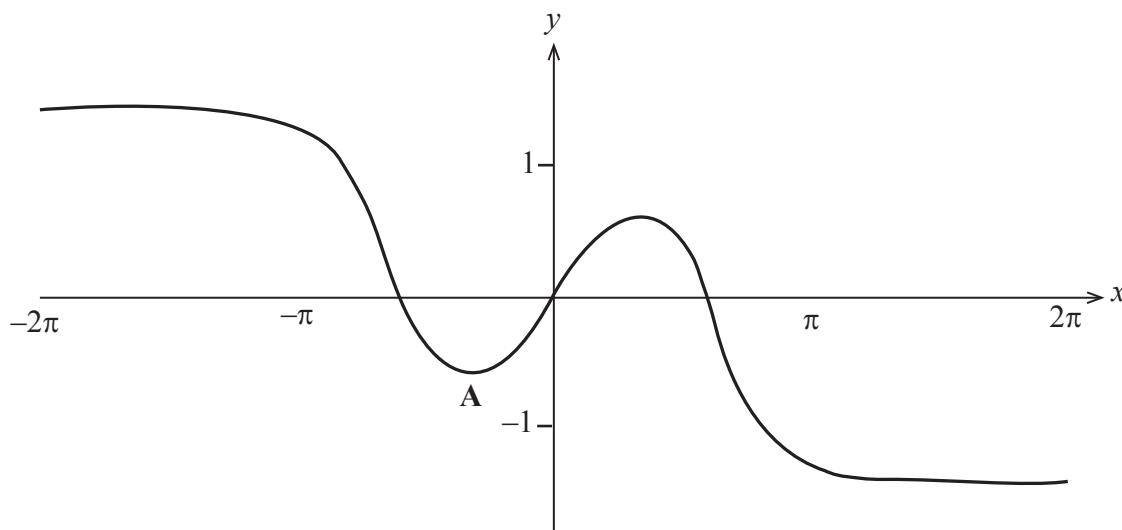
(i) Find the inverse function  $h^{-1}(x)$  stating its domain.

[6]

(ii) Rewrite  $\frac{x+2}{x-3}$  in the form  $a + \frac{b}{x-3}$

[3]

(iii) Write down two functions  $f(x)$  and  $g(x)$  such that  $h(x) = fg(x)$ .


Neither  $f(x)$  nor  $g(x)$  may be the identity function.

[2]

8 Part of the graph of

$$2 \sin x - x = \tan y$$

is shown in **Fig. 1** below.



**Fig. 1**

(i) Find  $\frac{dy}{dx}$  [4]

(ii) Hence find the coordinates of the turning point labelled **A** in **Fig. 1** above. [5]

(iii) State the equations of the 2 horizontal asymptotes. [2]

---

**THIS IS THE END OF THE QUESTION PAPER**

---