



ADVANCED SUBSIDIARY (AS)  
General Certificate of Education  
2013

---

**Mathematics**  
**Assessment Unit C1**  
*assessing*  
**Module C1: AS Core Mathematics 1**  
**[AMC11]**



**FRIDAY 24 MAY, MORNING**

---

**TIME**

1 hour 30 minutes.

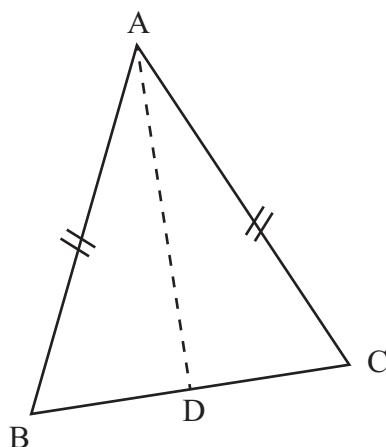
**INSTRUCTIONS TO CANDIDATES**

Write your Centre Number and Candidate Number on the Answer Booklet provided.  
Answer **all eight** questions.  
Show clearly the full development of your answers.  
Answers should be given to three significant figures unless otherwise stated.  
**You are not permitted to use any calculating aid in this paper.**

**INFORMATION FOR CANDIDATES**

The total mark for this paper is 75  
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.  
A copy of the **Mathematical Formulae and Tables booklet** is provided.

**BLANK PAGE**


**Answer all eight questions.**

**Show clearly the full development of your answers.**

**Answers should be given to three significant figures unless otherwise stated.**

**You are not permitted to use any calculating aid in this paper.**

**1** An outline for an airline logo is in the shape of an isosceles triangle as shown in **Fig. 1** below.



**Fig. 1**

$$AB = AC$$

B has coordinates  $(-1, 1)$

C has coordinates  $(5, 3)$

D is the mid point of BC

**(i)** Find the coordinates of D. [2]

**(ii)** Hence find the equation of the line AD. [4]

2 Fig. 2 below shows a sketch of the function  $y = f(x)$

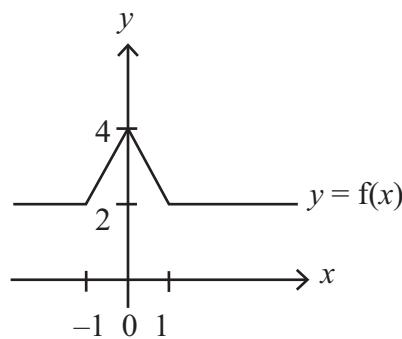



Fig. 2

Fig. 3 below shows a sketch of the function  $y = f(x)$  after a transformation.




Fig. 3

(i) Describe the transformation, using function notation. [2]

Fig. 4 below shows a sketch of the **original** function  $y = f(x)$  after a **different** transformation.

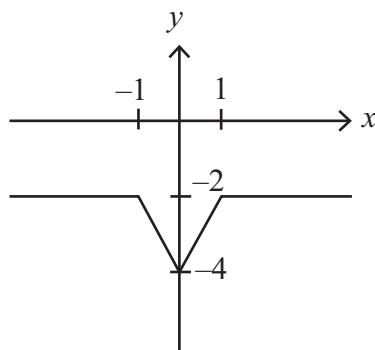



Fig. 4

(ii) Describe the transformation, using function notation. [2]

3 Rationalise the denominator of

$$\frac{5+\sqrt{3}}{1-2\sqrt{3}}$$

[6]

4 (a) Differentiate with respect to  $x$

$$x^3 + \sqrt{x} - \frac{x}{4} + \frac{1}{2x}$$

[5]

(b) Find the point on the curve  $y = 1 + x - 2x^2$  at which the gradient of the curve is 9 [6]

5 (a) (i) Write  $x^2 + 6x + 17$  in the form  $(x+a)^2 + b$  [2]

A curve has the equation  $y = x^2 + 6x + 17$

(ii) State the coordinates of the turning point on this curve and identify it as a maximum or minimum. [3]

(iii) State the range of values of  $x$  for which the value of  $y$  is increasing. [1]

(iv) Find the corresponding range of values of  $y$ . [1]

(b) Find  $x$  given that

$$3^{x+1} \times 9^x = \frac{1}{3\sqrt{3}}$$

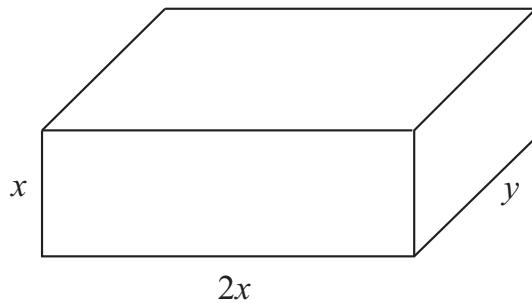
[7]

6  $f(x)$  is the expression  $ax^2 + bx + c$ .

When  $f(x)$  is divided by  $(x - 1)$  the remainder is 1

When  $f(x)$  is divided by  $(x - 2)$  the remainder is 16

When  $f(x)$  is divided by  $(x + 2)$  the remainder is 64


(i) Find  $a$ ,  $b$  and  $c$ .

[10]

(ii) Hence show that  $f(x)$  is a perfect square.

[2]

7 A closed jewellery box is in the shape of a cuboid as shown in **Fig. 5** below.



**Fig. 5**

The box has width  $2x$  cm, length  $y$  cm and height  $x$  cm.

The box has a volume of  $72$   $\text{cm}^3$

(i) Show that the total surface area of the closed box can be expressed as

$$A = 4x^2 + \frac{216}{x} \quad [6]$$

(ii) Using calculus, find the dimensions of the box that give the minimum surface area. [8]

8 Find the range of values of  $k$  for which the equation

$$(k-1)x^2 - (k+3)x - 1 = 0$$

has two distinct real roots.

[8]

---

**THIS IS THE END OF THE QUESTION PAPER**

---

