



ADVANCED  
General Certificate of Education  
2014

## Mathematics

### Assessment Unit F2

*assessing*

Module FP2: Further Pure Mathematics 2

**[AMF21]**

**THURSDAY 12 JUNE, AFTERNOON**



#### TIME

1 hour 30 minutes.

#### INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.  
Answer **all eight** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

#### INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the **Mathematical Formulae and Tables booklet** is provided.

Throughout the paper the logarithmic notation used is  $\ln z$  where it is noted that  $\ln z \equiv \log_e z$

**Answer all eight questions.**

**Show clearly the full development of your answers.**

**Answers should be given to three significant figures unless otherwise stated.**

**1** Given that

$$f(x) = \ln(1 + \sin x)$$

find the Maclaurin expansion for  $f(x)$  up to and including the term in  $x^2$  [6]

**2** Find, in radians, the general solution of the equation

$$\sin 3\theta = \sin \theta \quad [6]$$

**3** A geometric series is given by

$$e^{3x} + 3e^x + 9e^{-x} + \dots \quad x > 0$$

**(i)** Find an expression for the  $n$ th term of the series. [3]

**(ii)** Find the range of values of  $x$  for which the series has a sum to infinity. [4]

**(iii)** Find the sum to infinity when  $x = \ln 2$  [4]

4 (i) Given that

$$xy + 3y - x = 0$$

show that

$$(x + 3) \frac{dy}{dx} + y = 1 \quad [2]$$

(ii) Hence, using mathematical induction, prove that for  $n \geq 2$

$$(x + 3) \frac{d^n y}{dx^n} + n \frac{d^{n-1} y}{dx^{n-1}} = 0 \quad [5]$$

5 (i) Express in partial fractions

$$f(x) = \frac{2}{(x-1)^2(x^2+1)} \quad [6]$$

(ii) Hence find the exact value of

$$\int_2^3 \frac{2}{(x-1)^2(x^2+1)} dx \quad [5]$$

6 (i) Show that

$$(Z^n - e^{i\theta})(Z^n - e^{-i\theta}) \equiv Z^{2n} - 2Z^n \cos \theta + 1$$

where  $Z$  is a complex number.

[2]

(ii) Hence or otherwise find in  $(\cos \theta + i \sin \theta)$  form the roots of the equation

$$Z^4 - Z^2 \sqrt{2} + 1 = 0 \quad [5]$$

7 (i) Show that an equation of the normal to the parabola  $y^2 = 4ax$  at the point  $P(at^2, 2at)$  is

$$y + tx = 2at + at^3 \quad [4]$$

The normal at P meets the curve again at the point  $Q(as^2, 2as)$ .

(ii) Show that if  $t \neq 0$

$$s = -\left(t + \frac{2}{t}\right) \quad [3]$$

(iii) Using (ii) show that

$$PQ^2 = \frac{16a^2(t^2 + 1)^3}{t^4} \quad [4]$$

8 A particle P moves in a straight line so that its displacement  $x$  centimetres from a fixed point at time  $t$  seconds is given by the differential equation

$$\frac{d^2x}{dt^2} + 4 \frac{dx}{dt} + 4x = \lambda \sin 2t$$

where  $\lambda$  is a constant.

(i) Given that  $x = 0$  and  $\frac{dx}{dt} = \frac{\lambda}{4}$  when  $t = 0$ , find  $x$  in terms of  $t$  and  $\lambda$ . [14]

(ii) As  $t$  becomes large describe what happens to the solution found in part (i). [2]

---

**THIS IS THE END OF THE QUESTION PAPER**

---