

**ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2014**

Mathematics
Assessment Unit F1
assessing
Module FP1: Further Pure Mathematics 1
[AMF11]

TUESDAY 24 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer **all six** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the **Mathematical Formulae and Tables booklet** is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Let $\mathbf{A} = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 1 & 0 \\ 4 & 2 \end{pmatrix}$

Given that $\mathbf{ABC} = \mathbf{I}$, find the matrix \mathbf{B}

[5]

2 The equations of two circles C_1 and C_2 are

$$C_1 \quad x^2 + y^2 + 2x - 6y - 15 = 0$$

$$C_2 \quad x^2 + y^2 + 2y - 3 = 0$$

(i) Find the points of intersection of C_1 and C_2

[8]

A third circle C_3 is defined as

$$C_3 \quad 4x^2 + 4y^2 - 4x - 16y - 127 = 0$$

(ii) Show that circle C_2 lies entirely inside circle C_3

[8]

3 A binary operation $*$ is defined on the set of all ordered pairs (x, y) of real numbers. The operation is given as

$$(a, b) * (c, d) = (ac, b + d + 2)$$

(i) Show that $*$ is associative.

[4]

(ii) Find the identity element. Justify your answer.

[4]

4 (i) Show that the determinant of

$$\begin{vmatrix} 5 & -2 & -a \\ 4 & 2 & -6 \\ 1 & a & -4 \end{vmatrix}$$

is $-4a^2 + 32a - 60$

[3]

Consider the system of linear equations

$$\begin{aligned} 5x - 2y - az &= 3 \\ 4x + 2y - 6z &= 2 \\ x + ay - 4z &= 0 \end{aligned}$$

where x, y and z are real numbers.

(ii) Determine the number of solutions for the above system of equations for **each** of the cases:

$$\begin{aligned} a &= 3 \\ \text{and } a &= 4 \end{aligned}$$

[7]

(iii) Find the general solution of this system of equations when $a = 5$

[4]

5 (a) The transformation represented by the 2×2 matrix \mathbf{M} maps the points $(2, 3)$ and $(5, -1)$ onto $(7, 2)$ and $(9, 5)$ respectively.

Find the matrix \mathbf{M}

[5]

(b) The set of points which form the curve

$$x^2 + 5y^2 + 4xy - 6x - 8y = 0$$

is mapped by the matrix $\mathbf{N} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$

Show that the curve formed by the image points is a circle with radius $\sqrt{13}$

[9]

6 (a) Let $z_1 = \sqrt{3} + i$ and $z_2 = 1 - i$

(i) Find the modulus and argument of each of the complex numbers z_1 and z_2 [6]

(ii) Verify that $|z_1 z_2| = |z_1| |z_2|$ [4]

(b) (i) Sketch on an Argand diagram the locus of those points u which satisfy

$$|u - (4 + 15i)| = |u + i| \quad [3]$$

(ii) On the same diagram sketch the locus of those points v which satisfy

$$\arg \{v - (2 + 7i)\} = \frac{\pi}{6} \quad [3]$$

(iii) On your diagram shade the region which represents the locus of those points w , where w satisfies both

$$|w - (4 + 15i)| \leq |w + i|$$

$$\text{and } \frac{\pi}{6} \leq \arg \{w - (2 + 7i)\} \leq \pi \quad [2]$$

THIS IS THE END OF THE QUESTION PAPER
