

**ADVANCED
General Certificate of Education
2014**

Mathematics
Assessment Unit S4
assessing
Module S2: Statistics 2

[AMS41]

MONDAY 23 JUNE, MORNING

**MARK
SCHEME**

GCE ADVANCED/ADVANCED SUBSIDIARY (AS) MATHEMATICS

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right-hand column and they are prefixed by the letters **M**, **W** and **MW** as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.

W indicates marks for working.

MW indicates marks for combined method and working.

The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of **following through** their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:

- (a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
- (b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).

			AVAILABLE MARKS
1	(i) $r = \frac{36933 - \frac{460 \times 760}{10}}{\sqrt{\left(23666 - \frac{460^2}{10}\right)\left(59860 - \frac{760^2}{10}\right)}}$ $= \frac{1973}{\sqrt{2506 \times 2100}}$ $= 0.860$	M1 MW3 W1	
	(ii) Moderately strong positive correlation between fitness and attitude to healthy eating	M1	6
2	$\bar{X}_{20} \sim N\left(350, \frac{125}{20}\right) = N(350, 6.25) = N(350, 2.5^2)$ $P(348 < \bar{X}_{20} < 353) = P(-0.8 < Z < 1.2)$ $= \Phi(0.8) + \Phi(1.2) - 1$ $= 0.7881 + 0.8849 - 1$ $= 0.673$	MW1 MW2 M1 MW2 W1	7
3	(i) $n = 75$ $\sum fx = 1299.5$ $\sum fx^2 = 22792.75$ $\hat{\mu} = \bar{x} = 17.33$ $\hat{\sigma}^2 = 3.74$ (ii) C. I. = $\bar{x} \pm 1.96 \frac{\hat{\sigma}}{\sqrt{n}}$ $C. I. = 17.33 \pm 1.96 \frac{\sqrt{3.74}}{\sqrt{75}}$ $= (16.89, 17.76)$ (iii) Any acceptable assumption with respect to basic principle.	MW1 MW2 M1 MW2 W2 M1	9
4	(i) $R = a + bT$ $b = \frac{497450 - \frac{450 \times 6752}{6}}{35500 - \frac{450^2}{6}}$ $b = -5.11$ $a = \bar{R} - b\bar{T} = \frac{6752}{6} - (-5.11) \frac{450}{6} = 1508.9$ $R = 1510 - 5.11T$ (ii) $\hat{R} = 1508.9 - 5.11 \times 75 = 1125.33 = 1130\Omega$ (3 s.f.)	MW1 MW1 W1 M1 W1 W1 M1 W1	8

		AVAILABLE MARKS
5	$H_0 : \mu = 85$ $H_1 : \mu \neq 85$ Two-tailed z -test $z_{\text{crit}} = \pm 1.96$ $z_{\text{test}} = \frac{84.7 - 85}{\frac{0.8}{\sqrt{100}}}$ $= -3.75$ <p>Since z_{test} lies in the critical region we reject H_0 and conclude that there is sufficient evidence at 5% to suggest that the mean contents of active ingredients in the capsules is not 85</p>	M1 M1 M1 M1 MW1 MW1 W1 M1 M1 9
6	<p>Taking spring length (l) as the <i>response or dependent</i> variable</p> <p>and taking mass (m) as the <i>controlled or independent</i> variable.</p> <p>The mass values will be <i>exact</i> values</p> <p>whilst the spring length values will be subject to <i>variation</i>.</p> <p>Record a set of pairs of values and compute regression equation accordingly.</p>	M1 M1 M1 M1 M1 5
7	<p>(i) Let X be r.v. “the mass of cookies in a packet of standard-sized cookies”.</p> <p>Then $X \sim N(6 \times 30, 6 \times 2^2) = (180, 24)$</p> <p>$P(X > 185) = P(Z > 1.021)$</p> $= 1 - \Phi(1.021)$ $= 1 - 0.8463$ $= 0.1537 = 0.154 \text{ (3 s.f.)}$	MW2 MW1 M1 MW1 W1
	<p>(ii) Let Y be r.v. “the mass of a large-sized cookie”.</p> <p>Then $Y \sim N(50, 3^2) = N(50, 9)$</p> <p>Let D be r.v. “the difference between the mass of cookies in a packet of standard-sized cookies and four times the mass of a large-sized cookie.”</p> <p>Then $D = X - 4Y$</p> <p>$D \sim N(180 - 4 \times 50, 24 + 4^2 \times 9) = N(-20, 168)$</p> <p>$P(D < -10) = P(Z < 0.772)$</p> <p>$\Phi(0.772) = 0.7798$</p>	M1 MW3 MW1 W1 W1 13

		AVAILABLE MARKS
8	(i) $H_0 : \mu = 5$ $H_1 : \mu \neq 5$ Two-tailed t -test with 10 degrees of freedom $t_{\text{crit}} = \pm 2.228$	M1 M1 M1 MW1 W1
	$\bar{x} = \frac{52.5}{11} = 4.77$ $\hat{\sigma}^2 = \frac{1}{10} \left(252 - \frac{52.5^2}{11} \right) = 0.143$	MW1 M1 W1
	Test statistic = $\frac{\frac{4.77 - 5}{\sqrt{0.143}}}{11}$	MW1 MW1
	Test statistic = -1.99	W1
	As value of test statistic is not in critical region we do not reject H_0 , and conclude that there is not sufficient evidence at 5% level to suggest that the mean weight in the bags is not 5 kg.	M1 M1
(ii)	$H_0 : \mu = 5$ $H_1 : \mu < 5$ One-tailed t -test with 10 degrees of freedom $t_{\text{crit}} = -1.812$	M1 W1 W1
	As value of test statistic is in critical region we reject H_0 , and conclude that there is sufficient evidence at 5% level to suggest that the mean weight in the bags is less than 5 kg.	M1 M1
		18
	Total	75