

**ADVANCED
General Certificate of Education
2016**

Mathematics
Assessment Unit M4
assessing
Module M4: Mechanics 4

[AMM41]

WEDNESDAY 29 JUNE, MORNING

**MARK
SCHEME**

GCE ADVANCED/ADVANCED SUBSIDIARY (AS) MATHEMATICS

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right-hand column and they are prefixed by the letters **M**, **W** and **MW** as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.

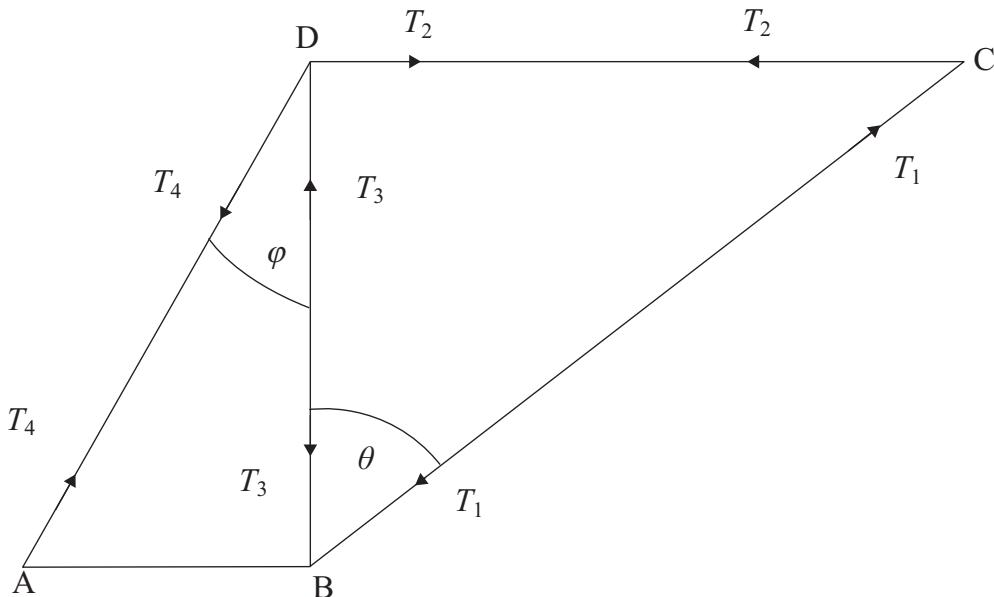
W indicates marks for working.

MW indicates marks for combined method and working.

The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

Positive marking:


It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of **following through** their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:

- (a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
- (b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examining team).

1 (i)

AVAILABLE
MARKS

BC must have an upwards vertical component to balance the load at C so T_1 is a thrust.

M1

The horizontal component of T_1 acts to the right so the force at C in CD must act to the left and be a tension.

M1

$$\cos \theta = \frac{12l}{15l} = \frac{4}{5}; \sin \theta = \frac{3}{5}$$

MW1

$$T_1 \cos \theta = 300 \Rightarrow T_1 = 375\text{N}$$

M1 W1

$$T_1 \sin \theta = T_2 \Rightarrow T_2 = 225\text{N}$$

MW1

$$(ii) \cos \varphi = \frac{12}{13}; \sin \varphi = \frac{5}{13}$$

MW1

$$\text{At D, } T_4 \sin \varphi = T_2 \Rightarrow T_4 = 585\text{N}$$

MW1

$$T_3 = T_4 \cos \varphi \Rightarrow T_3 = 540\text{N}$$

MW1

$$\text{(iii)} \rightarrow : 225, \uparrow : 540 + 375 \left(\frac{4}{5} \right) = 840$$

MW2

$$\text{magnitude of reaction at B} = \sqrt{225^2 + 840^2} = 870\text{N (3 s.f.)}$$

M1 W1

2 (i) K. E_A = $\frac{1}{2}(70)5^2$ G. P. E_A = 0

AVAILABLE MARKS

K. E_B = $\frac{1}{2}(70)v^2$ G. P. E_B = 70g (12)(1 - cos 25°)

Mechanical energy is conserved:

$$\frac{1}{2}(70)5^2 + 0 = \frac{1}{2}(70)v^2 + 70g (12)(1 - \cos 25^\circ)$$

M2 W3

$$v^2 = 2.9636 \dots \rightarrow v = 1.72 \text{ (3 s.f.)}$$

W1

(ii) resultant force towards C = $\frac{70v^2}{12}$

M1

$$\frac{70v^2}{12} = T - 70g \cos 25^\circ$$

M1 W1

$$T = 639\text{N (3 s.f.)}$$

W1

(iii) maximum tension occurs when stuntman is at A

M1

$$\text{maximum tension} = 70\left(g + \frac{5^2}{12}\right) = 832\text{N (3 s.f.)}$$

M1 W1

13

3 (i) mass, $M = \text{density} \times \text{area} = \rho \int_0^8 (9 + 2x)^{\frac{1}{2}} dx$

M2 W1

$$M = \frac{1}{3}\rho \left[(9 + 2x)^{\frac{3}{2}} \right]_0^8$$

MW1

$$M = \frac{98\rho}{3}$$

MW1

(ii) centre of mass of element is at $(x, \frac{y}{2})$

$$\mathbf{M}(Ox) = \rho \int_0^8 \frac{y}{2} y dx = \rho \int_0^8 \frac{y^2}{2} dx$$

M1

MW1

$$\mathbf{M}(Ox) = \frac{\rho}{2} \int_0^8 (9 + 2x) dx$$

MW1

$$\mathbf{M}(Ox) = \frac{\rho}{2} [9x + x^2]_0^8$$

MW1

$$\mathbf{M}(Ox) = 68\rho$$

W1

$$\bar{y} = \frac{\mathbf{M}(Ox)}{M} = 68\rho \times \frac{3}{98\rho}$$

$$\bar{y} = \frac{102}{49} = 2.08\text{m (3 s.f.)}$$

MW1

11

4 (i) The inside wheels have left the road surface.

M1

AVAILABLE
MARKS

(ii) $\mathbf{R}(\leftarrow): \frac{mv^2}{r} = F \cos \alpha + R \sin \alpha$

M2 W1

$\mathbf{R}(\uparrow): mg = R \cos \alpha - F \sin \alpha$

MW1

$\mathbf{M}(G): Rd = Fh$

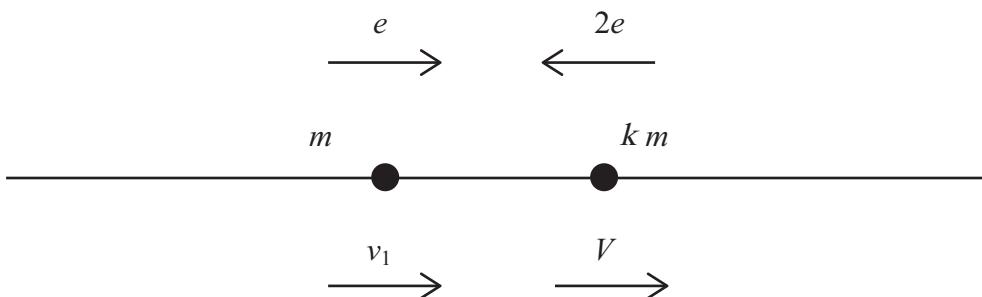
M1W1

$$\frac{v^2}{rg} = \frac{R \frac{d}{h} \cos \alpha + R \sin \alpha}{R \cos \alpha - R \frac{d}{h} \sin \alpha}$$

M1

$$v^2 = rg \left(\frac{d + h \tan \alpha}{h - d \tan \alpha} \right)$$

W1


9

5 (i) Just after colliding with the walls, the velocities of A and B are e and $-2e$ respectively.

MW2

AVAILABLE MARKS

(ii) Let the velocities of A and B immediately after they collide be v_1 and V respectively.

Momentum is conserved:

$$me + km(-2e) = mv_1 + kmV$$

M1

$$e - 2ke = v_1 + kV$$

W1

From Newton's experimental law,

$$-e(-2e - e) = V - v_1$$

M1

$$3e^2 = V - v_1$$

W1

$$V + kV = 3e^2 + e(1 - 2k)$$

M1

$$V = \frac{3e^2 + e(1 - 2k)}{1 + k}$$

W1

(iii) When $e = 1$, $V = \frac{2(2 - k)}{1 + k}$

MW1

(iv) $v_1 = V - 3e^2$

M1

$$v_1 = \frac{3e^2 + e(1 - 2k) - 3e^2(1 + k)}{1 + k}$$

W1

$$v_1 = \frac{e(1 - 2k) - 3e^2k}{1 + k}$$

W1

Since $v_1 < 0$, $e(1 - 2k) - 3e^2k < 0$

M1

$$(1 - 2k) - 3ek < 0$$

W1

$$e > \frac{1 - 2k}{3k}$$

MW1

15

6 (i) Let m be the mass of the satellite.
Using Newton's law of gravitation gives

$$\frac{GmM}{r^2} = mr\omega^2, \text{ where } \omega \text{ is the angular speed of the satellite}$$

M2

The period of the orbit is given by $T = \frac{2\pi}{\omega}$. Hence,

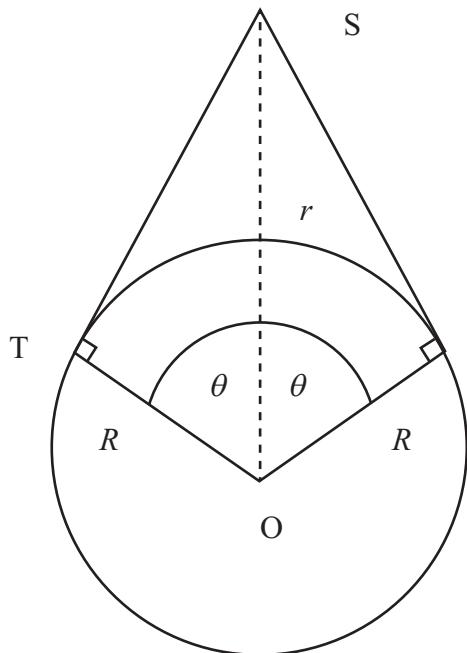
M1

$$T = 2\pi\sqrt{\frac{r^3}{GM}} \text{ and } r = \sqrt[3]{\frac{T^2GM}{4\pi^2}}$$

W2

(ii) $[r] = [L]; \left[\sqrt[3]{\frac{T^2GM}{4\pi^2}} \right] = \left[(T^2M^{-1}L^3T^{-2}M)^{\frac{1}{3}} \right] = [L]$

M1 W2


(iii) $r = \sqrt[3]{\frac{(3.564 \times 10^4)^2 \times 6.67 \times 10^{-11} \times 1.90 \times 10^{27}}{4\pi^2}}$ metres

M1

$$r = 1.60 \times 10^8 \text{ m (3 s.f.)}$$

W1

(iv)

Let R metres be the radius of Jupiter.

$$\hat{S}TO = 90^\circ \Rightarrow \cos \theta = \frac{R}{r}$$

M1

$$\frac{2\pi}{2\theta} = \frac{\pi}{\cos^{-1} \frac{R}{r}}$$

M1 MW1

$$\frac{2\pi}{2\theta} = 2.81\dots \text{ Hence, three satellites are required in this orbit}$$

W1

14

Total**75**