

Rewarding Learning

ADVANCED

General Certificate of Education

2016

Mathematics

Assessment Unit M4
assessing
Module M4: Mechanics 4

AMM41

[AMM41]
WEDNESDAY 29 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.

Answer **all six** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

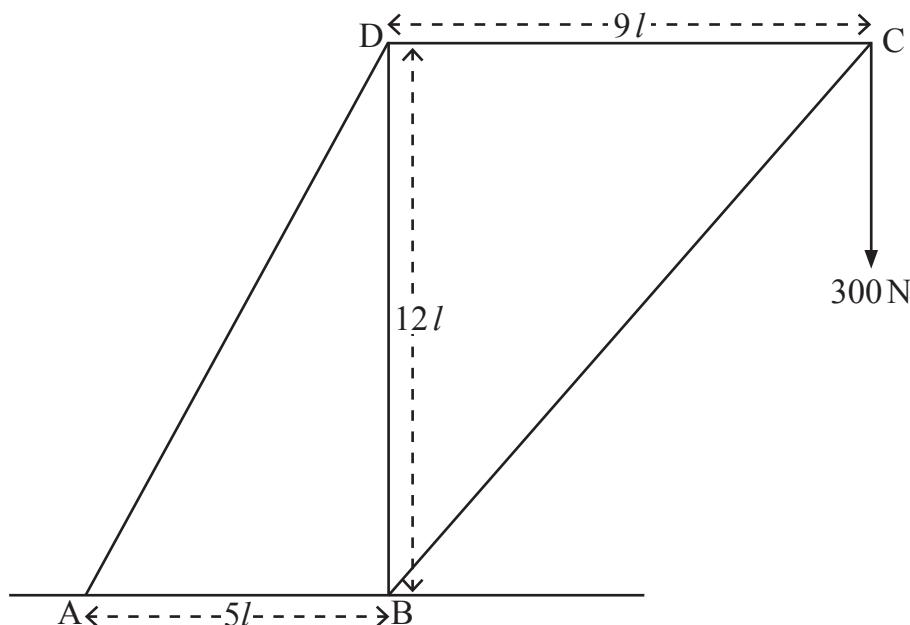
The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Answers should include diagrams where appropriate and marks may be awarded for them.

Take $g = 9.8 \text{ m s}^{-2}$, unless specified otherwise.

A copy of the **Mathematical Formulae and Tables booklet** is provided.


Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

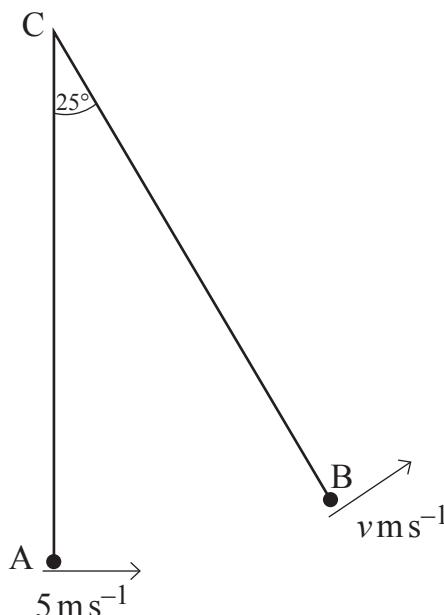
1 A crane is modelled by four light smoothly jointed rods AD, BC, CD and BD. The framework is fixed to the horizontal ground at A and B and rests in a vertical plane. DC is horizontal and BD is vertical.
 $AB = 5l$, $BD = 12l$ and $CD = 9l$
A weight of 300 N acts at C, as shown in **Fig. 1** below.

Fig. 1

(i) By considering the forces acting at C, find the forces in BC and CD, stating clearly whether each is a tension or thrust. [6]

(ii) Show that the magnitude of the force in the rod BD is 540 N. [3]

(iii) Find the magnitude of the reaction of the ground at B. [4]


2 A stuntman on a film set swings at one end of a rope and moves along an arc of a vertical circle.

The mass of the stuntman is 70 kg and the rope has length 12 m.

The stuntman can be modelled as a particle at one end of a light inextensible rope whose other end is fixed at C.

When the rope is vertical the stuntman is at A and has speed 5 m s^{-1}

When the rope makes an angle of 25° with the downward vertical, the stuntman is at B and has speed $v \text{ m s}^{-1}$ as shown in **Fig. 2** below.

Fig. 2

Take the gravitational potential energy at A to be zero.

(i) Find v . [6]

(ii) Find the tension in the rope when the stuntman is at B. [4]

(iii) Find the maximum tension in the rope. [3]

3 A lamina of density $\rho \text{ kg m}^{-2}$ can be modelled as the area bounded by the x -axis, the lines $x = 0$, $x = 8$ and the curve

$$y = (9 + 2x)^{\frac{1}{2}}$$

as shown in **Fig. 3** below.

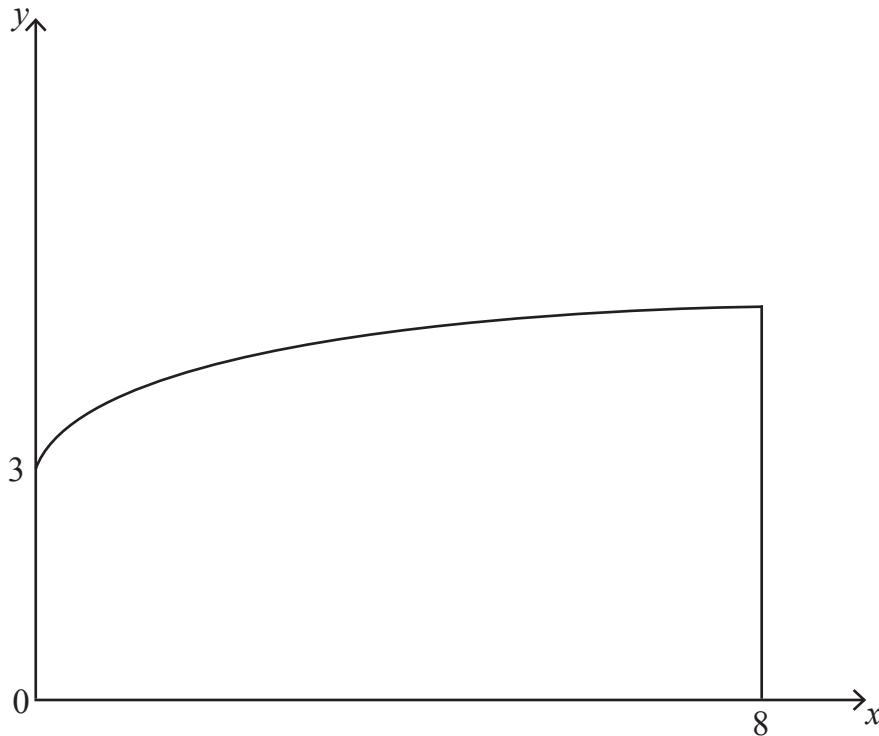


Fig. 3

(i) Show that the mass of the lamina is $\frac{98\rho}{3}$ kg [5]

The centre of mass of the lamina is at G.

(ii) Find the distance of G from the x -axis. [6]

4 A car of mass M kg is being tested on a road banked at an angle α to the horizontal. **Fig. 4** below represents the forces acting on the car with centre of mass G, h metres above the road and d metres from each side of the car.

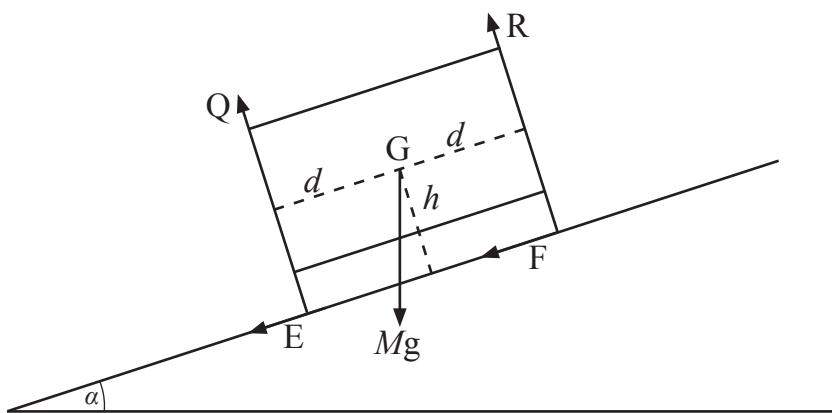


Fig. 4

When the car is travelling at v m s $^{-1}$ on a road of circular radius r metres, it starts to topple outwards.

(i) Explain briefly why the force Q is zero at that instant. [1]

(ii) Show that

$$v^2 = rg \left(\frac{d + h \tan \alpha}{h - d \tan \alpha} \right) \quad [8]$$

5 Fig. 5 below shows two balls A and B, of masses m and km respectively lying at rest on a smooth horizontal surface between two vertical walls P and Q. A is given a horizontal velocity of 1 m s^{-1} towards P and simultaneously B is given a horizontal velocity of 2 m s^{-1} towards Q.

Fig. 5

A and B move in the same straight line perpendicular to P and Q. The coefficient of restitution between the balls and P and Q is e .

(i) Write down the velocities of A and B just after they collide with P and Q respectively. [2]

After impact with the walls, A and B collide directly with each other. The coefficient of restitution between A and B is also e .

(ii) Show that the velocity, V , of B just after this collision is

$$V = \frac{3e^2 + e(1 - 2k)}{1 + k} \quad [6]$$

(iii) Write down, in terms of k , the maximum value of V . [1]

As a result of this collision the direction of motion of A is reversed.

(iv) Show that

$$e > \frac{1 - 2k}{3k} \quad [6]$$

6 An observation satellite is placed in a circular orbit lying in a plane through the equator of the planet Jupiter.

The period, T , of the satellite is the same as the period of rotation of Jupiter so that the satellite remains above the same point on Jupiter's equator.

The mass of Jupiter is M .

Let r be the distance from the satellite to the centre of Jupiter.

(i) Show that

$$r = \left(\frac{GMT^2}{4\pi^2} \right)^{\frac{1}{3}}$$

where G is the universal gravitational constant.

[5]

Given that G has dimensions $[M^{-1}L^3 T^{-2}]$,

(ii) show that this equation is dimensionally correct.

[3]

Given that

$$M = 1.90 \times 10^{27} \text{ kg}$$

$$G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$$

$$T = 3.564 \times 10^4 \text{ s}$$

(iii) find r .

[2]

Given that the radius of Jupiter is $7.01 \times 10^7 \text{ m}$,

(iv) find the minimum number of observation satellites in the same circular orbit of period T needed to view all points on the equator of Jupiter.

[4]

THIS IS THE END OF THE QUESTION PAPER
