

ADVANCED
General Certificate of Education
2017

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Mathematics

Assessment Unit C4

assessing

Module C4:

Core Mathematics 4

AMC41

WEDNESDAY 7 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer **all eight** questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. **Do not write with a gel pen.**

Questions which require drawing or sketching should be completed using an H.B. pencil.

All working should be clearly shown in the spaces provided. Marks may be awarded for partially correct solutions. **Answers without working may not gain full credit.**

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the **Mathematical Formulae and Tables booklet** is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

10346

20AMC4101

1 (i) Write

$$12\cos\theta + 5\sin\theta$$

in the form $R \cos(\theta - \alpha)$, where R is a positive integer and $0 < \alpha < \frac{\pi}{2}$ [3]

10346

The depth d (m) of water in a reservoir at time t (hours) can be modelled by the equation

$$d = 12 \cos t + 5 \sin t + 20$$

(ii) Find the minimum depth of water in the reservoir. [2]

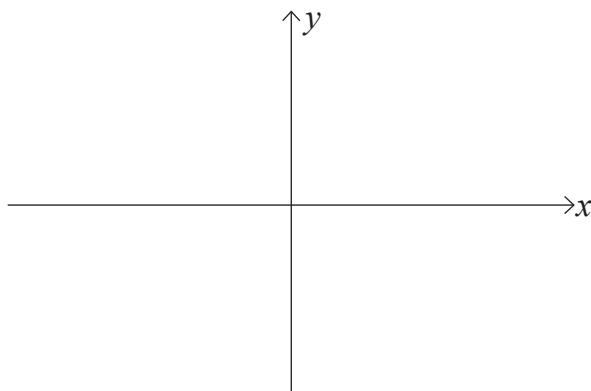
[Turn over

2 The functions f and g are defined as:

$$f(x) = 2x^2 - 4 \quad x > 0$$

$$g(x) = \sec x \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$$

(i) Find the inverse function $f^{-1}(x)$ and state its domain.


4]

10346

(ii) On the axes below sketch the graph of $y = g(x)$.

[2]

(iii) State the range of the function $g(x)$.

[1]

(iv) Find the composite function $fg(x)$.

[2]

10346

[Turn over

3 The points A, B and C have position vectors

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \quad \overrightarrow{OB} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} \quad \overrightarrow{OC} = \begin{pmatrix} -3 \\ 2 \\ 7 \end{pmatrix}$$

(i) Find \overrightarrow{BA}

2]

10346

(ii) Find the angle ABC.

[5]

[Turn over

10346

20AMC4107

4 The value V of a car decreases at a rate proportional to V .

(i) Model this by a differential equation.

2]

After 2 years a car, with an initial value of £25 000, has a value of £15 000

(ii) Find the value of the car after 5 years.

9]

10346

[Turn over]

10346

20AMC4109

5 Fig. 1 below shows a sketch of part of the curve $y = x^2 \ln 3x$

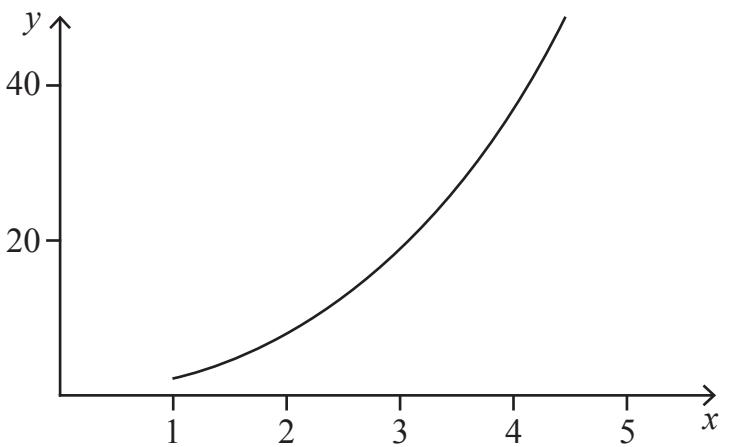


Fig. 1

A sail for a boat can be modelled by the area between the curve $y = x^2 \ln 3x$, the x -axis and the lines $x = 1$ and $x = 4$

Find the area of the sail.

1

10346

10346

[Turn over]

20AMC4111

6 A curve is defined by the parametric equations

$$x = 2 + 3 \sin \theta \quad \text{and} \quad y = \sin \theta - \cos \theta$$

(i) Find $\frac{dy}{dx}$ in terms of θ . [4]

(ii) Find $\frac{d^2y}{dx^2}$ in terms of θ . [4]

[Turn over

10346

20AMC4113

(iii) Hence find and classify the stationary point (x, y) in the range $0 < \theta < \pi$

4]

10346

20AMC4114

[Turn over

10346

20AMC4115

7 (a) Solve

$$\sin\left(x - \frac{\pi}{3}\right) = \sqrt{3} \sin x$$

for $-\pi \leq x \leq \pi$

5]

10346

(b) Prove the identity

$$\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \equiv \sec 2\theta + \tan 2\theta$$

[6]

10346

[Turn over

20AMC4117

8 Use the substitution $u = \sin x$ to find

$$\int \frac{3\cos x \sin^2 x}{4 - \sin^2 x} dx$$

[12]

THIS IS THE END OF THE QUESTION PAPER

10346

20AMC4119

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	

Total Marks	

Examiner Number

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

10346/7

20AMC4120