

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2017

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Mathematics

Assessment Unit C1

assessing

Module C1:

AS Core Mathematics 1

[AMC11]

AMC11

WEDNESDAY 17 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer **all eight** questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. **Do not write with a gel pen.**

Questions which require drawing or sketching should be completed using an H.B. pencil.

All working should be clearly shown in the spaces provided. Marks may be awarded for partially correct solutions. **Answers without working may not gain full credit.**

Answers should be given to three significant figures unless otherwise stated.

You are not permitted to use any calculating aid in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the **Mathematical Formulae and Tables booklet** is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

10435

24AMC1101

BLANK PAGE

DO NOT WRITE ON THIS PAGE

10435

24AMC1102

1 (a) Simplify as far as possible

$$\frac{3x^2 - 12}{x + 4} \times \frac{2x^2 + 7x - 4}{3x + 6}$$

[4]

10435

[Turn over

(b) Solve the simultaneous equations

$$\begin{aligned}3x + 4y - z &= 6 \\x - 2y + 3z &= 12 \\4x + y - 2z &= 11\end{aligned}$$

6]

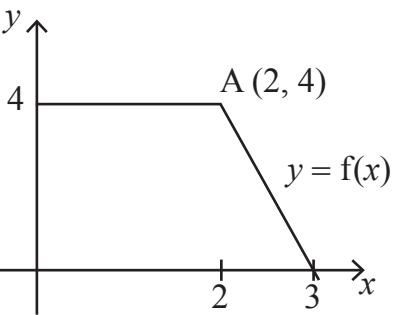
10435

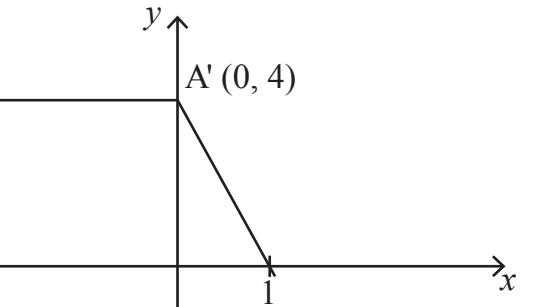
[Turn over]

10435

24AMC1105

2 Fig. 1 below shows a sketch of the graph of the function $y = f(x)$.

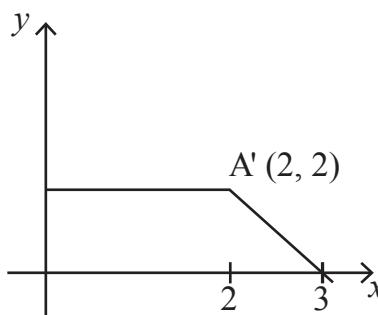



Fig. 1

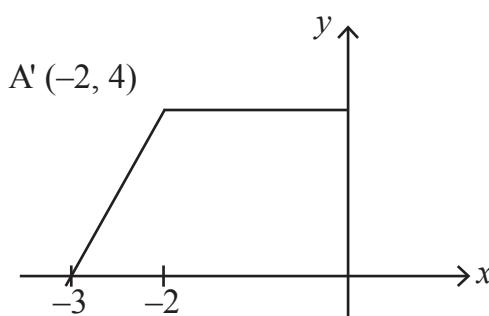
Point A has coordinates (2, 4).

Each sketch below shows a single transformation of the function $y = f(x)$.

For each sketch, use function notation to describe the transformations shown.


(i)

[2]



(ii)

[2]

(iii)

[2]

[Turn over]

3 A piece of timber, in the shape of a trapezium, is shown in Fig. 2 below.

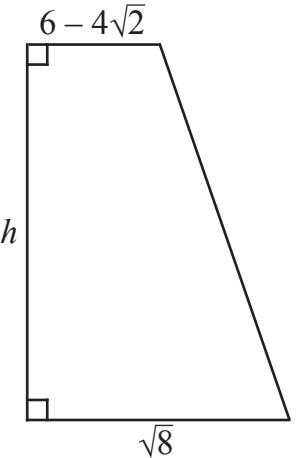


Fig. 2

The parallel sides of the trapezium have lengths $(6 - 4\sqrt{2})$ metres and $\sqrt{8}$ metres. The area of the piece of timber is 7 m^2

Find the exact value of h , leaving your answer in the form $a + \sqrt{b}$

5]

10435

[Turn over

10435

24AMC1109

4 **Fig. 3** below shows the rhombus ABCD.

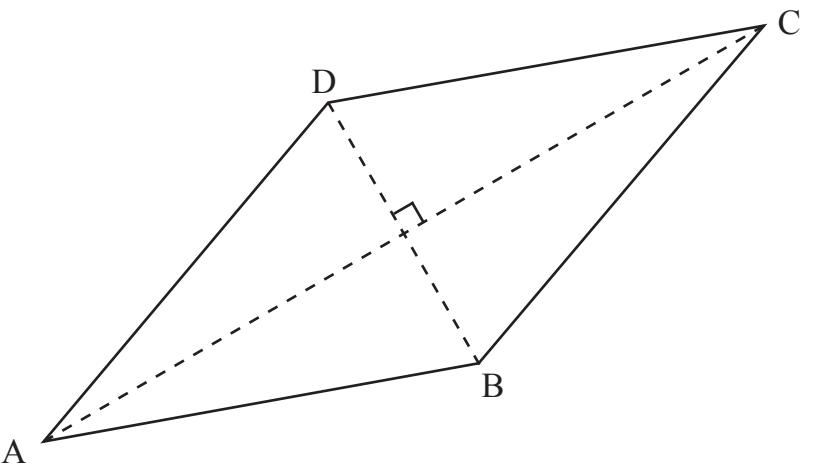


Fig. 3

Point A has coordinates $(-2, 1)$.

Point C has coordinates (3, 11).

Find the equation of the line BD.

Leave your answer in the form $ax + by + c = 0$, where a , b and c are integers.

5]

10435

[Turn over]

10435

24AMC1111

5 (a) When the expression $(ax^2 + 8x + 20)$ is divided by $(x + 3)$ the remainder is a .

Find the value of a .

6]

10435

(b) Solve

$$3(2x + 1) - (x + 3)(x - 1) < 0$$

[7]

10435

[Turn over

24AMC1113

6 Find the equation of the tangent to the curve

$$y = 4\sqrt{x} - \frac{x^2}{2} \quad (x > 0)$$

at the point where the curve crosses the x -axis.

3]

10435

[Turn over]

10435

24AMC1115

7 (a) Solve the simultaneous equations

$$8^x \times 16^{y-1} = \sqrt{32}$$

$$4x + 2y = 7$$

[8]

[Turn over]

10435

24AMC1117

(b) Show that the curves given by the equations

$$y = 2 - \frac{1}{x}$$

$$\text{and } y = \frac{1}{2-x}$$

touch each other.

6]

10435

[Turn over]

10435

24AMC1119

8 Fig. 4 below shows the design of a hollow metal casing.

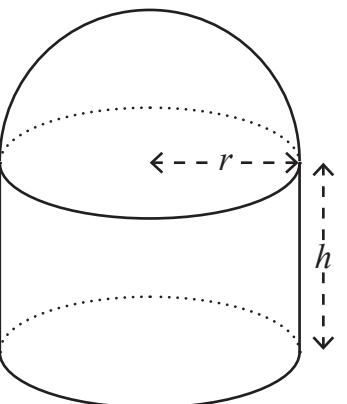


Fig. 4

The casing consists of a circular base, open cylinder and open hemisphere, all with common radius.

The cylinder has radius r metres and height h metres.

The casing has volume $\frac{\pi}{3}m^3$

[Volume of sphere = $\frac{4}{3}\pi r^3$, Surface area of sphere = $4\pi r^2$]

(i) Show that

$$h = \frac{1 - 2r^3}{3r^2}$$

[4]

(ii) Hence show that S , the total surface area of the casing, can be expressed as

$$S = \frac{5\pi r^2}{3} + \frac{2\pi}{3r}$$

[4]

The total surface area of the casing

$$S = \frac{5\pi r^2}{3} + \frac{2\pi}{3r}$$


is to be coated with expensive heat-resistant paint.

(iii) Using calculus, find the value of r for which the total surface area is kept to a minimum. [2]

7

10435

THIS IS THE END OF THE QUESTION PAPER

10435

24AMC1123

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	

Total Marks	

Examiner Number

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

10435/7

24AMC1124