

Rewarding Learning

ADVANCED

General Certificate of Education

2018

Mathematics

Assessment Unit M3

assessing

Module M3: Mechanics 3

AMM31

[AMM31]

FRIDAY 22 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.

Answer **all six** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

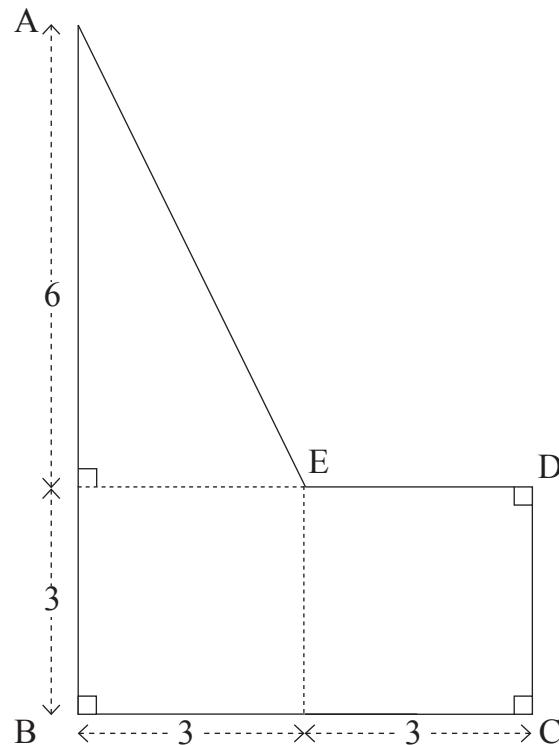
The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Answers should include diagrams where appropriate and marks may be awarded for them.

Take $g = 9.8 \text{ m s}^{-2}$, unless specified otherwise.

A copy of the **Mathematical Formulae and Tables booklet** is provided.


Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 **Fig. 1** below shows a uniform lamina ABCDE made from uniform material of mass 1 kg m^{-2}

(All dimensions are in metres)

Fig. 1

Find the distance of the centre of mass of this lamina from the edges AB and BC.

[7]

2 **Fig. 2** below shows two fixed points, P and Q, where Q is 3 m vertically below P. A particle B of mass 2 kg is joined to P and Q by two light elastic strings, each of natural length 1 m and modulus of elasticity λ newtons. B hangs in equilibrium $\frac{5}{3}$ m below P.

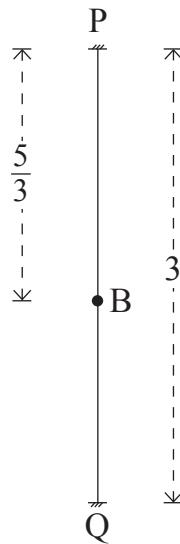


Fig. 2

(i) Show that $\lambda = 6g$. [6]

B is now pulled vertically downwards a further distance of $\frac{1}{3}$ m and released from rest.

(ii) Prove that the periodic time of the subsequent motion of B is

$$2\pi \sqrt{\frac{1}{6g}} \text{ seconds} \quad [7]$$

3 A ship A is sailing at a constant speed of 20 kmh^{-1} on a bearing of 090°
 At noon a ship B is 35 km from A on a bearing of 150°
 In order to intercept A, B sails at a constant speed of 18 kmh^{-1} on a bearing of θ°

(i) Find the two possible values of θ . [8]

(ii) Find the earliest time at which B will intercept A. [5]

4 **Fig. 3** below shows three light uniform rods each of length $3a$ metres joined together in the shape of an equilateral triangle ABC.
 D and E are points on AB and AC respectively, such that $AD = AE = 2a$ metres.
 M is the midpoint of BC.

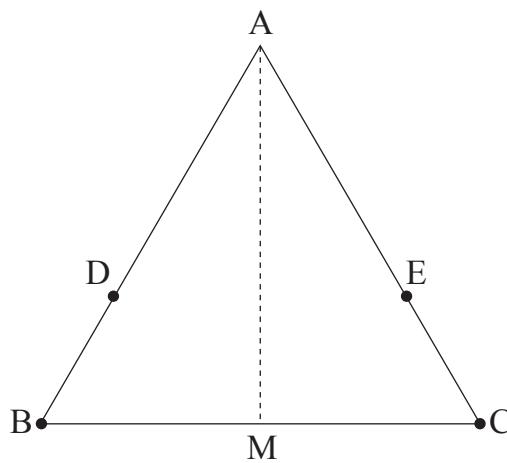


Fig. 3

Particles of mass m , $5m$, $2m$ and km are fastened at the points B, D, E and C, respectively.
 The centre of mass, G, of this system of four particles lies on AM.

(i) Find k . [5]

(ii) Hence find the distance AG in terms of a . [5]

5 P and Q are fixed points with position vectors

$$\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \text{m} \text{ and } \begin{pmatrix} -4 \\ 2 \\ 10 \end{pmatrix} \text{m}$$

respectively.

A particle T of mass 6 kg moves along the line PQ, passing through P with a speed of 3 m s^{-1} . T is acted on by forces

$$\mathbf{F}_1 = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \text{N} \text{ and } \mathbf{F}_2 = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{N}$$

The resultant force acts from P towards Q.

(i) Show that

$$\mathbf{F}_2 = \begin{pmatrix} -6d - 3 \\ 3d + 1 \\ 6d - 2 \end{pmatrix} \text{N}$$

where d is an unknown constant.

[6]

T passes through Q with a speed of 12 m s^{-1}

(ii) Use the work-energy principle to find d .

[5]

6 A particle P of mass m kg is fastened to one end of a light elastic string of natural length l metres and modulus of elasticity $\frac{3\sqrt{3}mg}{2}$ N.

The other end of the string is fastened to a fixed point Q at the top of a rough plane inclined at 60° to the horizontal.

P rests on the plane a distance $\frac{3l}{2}$ from Q down a line of greatest slope of the plane.

P is about to slide up the plane.

(i) Draw a diagram to show all the external forces acting on P. [2]

(ii) Show that the coefficient of friction between P and the plane is $\frac{\sqrt{3}}{2}$ [7]

When P is held on the plane a distance l from Q down a line of greatest slope and released from rest, it slides down the plane.

(iii) Use the work-energy principle to find the distance of P from Q when P next comes to rest. [12]

THIS IS THE END OF THE QUESTION PAPER
