

Rewarding Learning

ADVANCED

General Certificate of Education

2018

Mathematics

Assessment Unit M4

assessing

Module M4: Mechanics 4

AMM41

[AMM41]

MONDAY 25 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.

Answer **all six** questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Answers should include diagrams where appropriate and marks may be awarded for them.

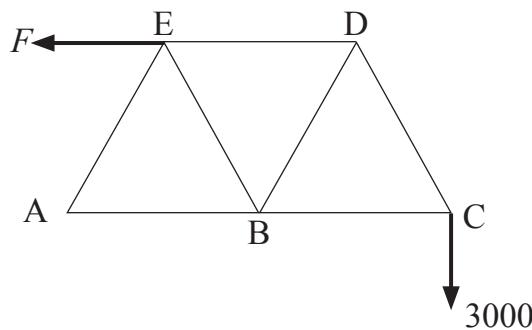
Take $g = 9.8 \text{ m s}^{-2}$, unless specified otherwise.

A copy of the **Mathematical Formulae and Tables booklet** is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$

Answer all six questions.

Show clearly the full development of your answers.


Answers should be given to three significant figures unless otherwise stated.

1 Fig. 1 below shows a crane ABCDE.

$AB = BC = CD = DE = DB = BE = AE = 4\text{ m}$.

The crane is smoothly hinged at A to a fixed point.

The crane is maintained in equilibrium in the vertical plane with DE horizontal by a horizontal force F newtons applied at E in the direction \vec{DE} .
A load of 3000 N is suspended at C.

Fig. 1

Model the crane as a light pin-jointed framework.

(i) Find F .

[3]

(ii) Find the magnitude of the reaction at A.

[5]

(iii) Find the force in DE, stating clearly if it is a tension or a thrust.

[7]

- 2 Fig. 2 below shows a uniform lamina ABCD in the shape of the area enclosed between the curve $y = \frac{4}{x^2}$, the x -axis and the lines $x = 1$ and $x = 2$

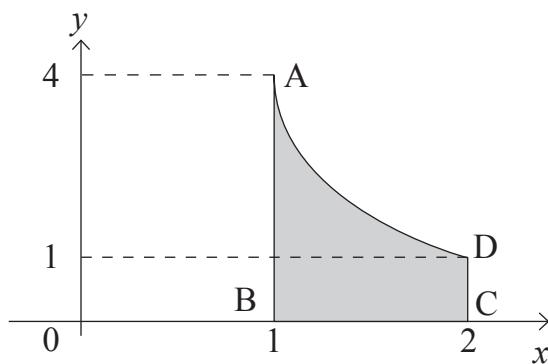


Fig. 2

All dimensions are in metres.

The material from which the lamina is made has a density of 1 kg m^{-2}

The area of the lamina is 2 m^2

The centre of mass of the lamina is at the point (X, Y) .

(i) Show that $Y = \frac{7}{6}$ [7]

(ii) Find X . [3]

The lamina is freely suspended from A.

(iii) Find the angle the edge AB makes with the vertical. [4]

- 3 A light rigid rod AB of length r metres is freely hinged at A to a fixed point and has a particle of mass m kg fastened at B. The rod is free to rotate about A in the vertical plane. While hanging in equilibrium vertically below A, the particle is given a horizontal speed $u \text{ m s}^{-1}$

- (i) Show that for the particle to perform a full circle about A,

$$u > 2\sqrt{gr}$$

where g is the acceleration due to gravity.

[6]

- (ii) If the tension in the rod is zero when the particle is vertically above A, find u .

[5]

- 4 A liquid with density $\rho \text{ kg m}^{-3}$ flows with velocity $v \text{ m s}^{-1}$ through a pipe of diameter D metres. The pressure drop $P \text{ N m}^{-2}$ between two points a distance L metres apart is proportional to ρ, v, D and L .

- (i) Use the Method of Dimensions to show that a possible formula for P is

$$P = k \left(\frac{L}{D}\right)^\alpha \rho v^2$$

where k and α are arbitrary constants.

[8]

When the same liquid flows through a pipe of diameter $\frac{D}{2}$ metres with velocity $2v \text{ m s}^{-1}$ the pressure drop between two points a distance L metres apart is 8 times as great.

- (ii) Find α .

[3]

- 5 Fig. 3 below shows a rectangle ABCD where $AB = 10\text{ m}$ and $AD = 6\text{ m}$.
 E is the point on AB such that $\hat{A}DE = 50^\circ$

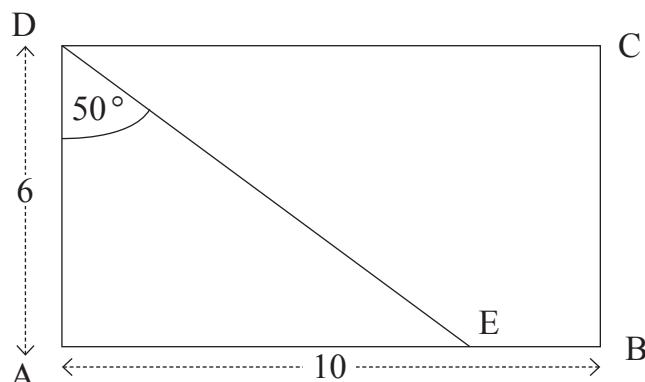


Fig. 3

Forces of 2 N , 4 N , 1 N , 8 N and 10 N act along \vec{AD} , \vec{CD} , \vec{BC} , \vec{BA} and \vec{DE} respectively. When a force R , acting at A, is added to this system of forces it reduces the system to a couple.

- (i) Find the magnitude and direction of R . [8]
- (ii) Find the magnitude of the couple. [3]
- 6 A and B are small smooth spheres of equal radii and masses m and $3m$ respectively. They lie in a straight smooth horizontal groove which meets a smooth vertical wall at right angles. Initially the spheres are at rest with B between A and the wall. The coefficient of restitution between A and B and between B and the wall is e . A is propelled towards B with speed u . When A collides with B its direction of motion is reversed.
- (i) Show that $e > \frac{1}{3}$ [6]
- (ii) Find, in terms of u and e , the speed of B when it rebounds from the wall. [3]
- (iii) Find the range of values of e for which B will collide with A again. [4]

THIS IS THE END OF THE QUESTION PAPER
