

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2018

Physics
Assessment Unit AS 1
assessing
Forces, Energy and Electricity
[SPH11]

TUESDAY 15 MAY, MORNING

**MARK
SCHEME**

1	(a) $P = VI$ 18 = 9.6I $I = 1.9$ (1.875) (A)	[1] [1] [1]	[3]	AVAILABLE MARKS	
	(b) $E = VIt$ or Pt Conversion of t to seconds (660) $E = 12000$ (J) ecf for I (SE t in minutes 198J scores [2])	[1] [1] [1]	[3]		
	(c) $I = nq/t$ or $Q = It$ or $Q = \frac{W}{V}$ $n = \frac{W}{eV}$ (ecf E) $1.9 = n(1.6 \times 10^{-19})/(660)$ or $Q = 1241$ (C) $n = 7.7 \times 10^{21}$ or 7.8×10^{21} ecf for I, t	[1] [1] [1]	[3]	9	
2	(a) I proportional to V Provided temperature constant	[1] [1]	[2]		
	(b) (i) Lamp in series with cell Variable resistor (or power pack) Ammeter in series, Voltmeter across lamp	[1] [1] [1] [1]	[4]		
	(ii) Record current and voltage Adjust (using variable resistor) ≥ 5 sets of results	[1] [1] [1]	[3]		
	(iii) Curve, starting at (0,0) Correct sense	[1] [1]	[2]		
	(c) Larger current (or V) temperature increases Resistance of metal filament increases with temperature $R = \frac{V}{I}$ so graph gets less steep	[1] [1] [1]	[3]	14	
3	(a) Calculates 13 cm 25(9.81) } can be on diagram $F(22) = 25(9.81)(13)$ $F = 145$ N	[1] [1] [1] [1]	[4]		
	(b) F is always to the right of (front) wheels/inside base/between wheels No anticlockwise moment	[1] [1]	[2]	6	
4	(a) $9.4 \times 10^{27} \text{ Tm}^3 = 9.4 \times 10^{63} \text{ m}^3$ $1.8 \times 10^{13} \text{ Gg} = 1.8 \times 10^{19} \text{ kg}$ Density = $1.9 \times 10^{-45} \text{ kg m}^{-3}$ (ecf their m and V) To 2 s.f.	[1] [1] [1] [1]	[4]		
	(b) Base unit of F = kg m s^{-2} Base unit of v = m s^{-1} Base unit of B = s kg^{-1}	[1] [1] [1]	[3]	7	

					AVAILABLE MARKS
5	(a) (i) $24.9 \cos 38$ 19.6 (kN) 2000 kg	[1] [1] [1]	[3]		
	(ii) $24.9 \sin 38$ 15.3 kN S.E. sin, cos reversed max $\frac{3}{5}$	[1] [1]	[2]		
	(b) Momentum vector, Ke scalar Vectors have an associated direction	[1] [1] [1]	[3]	8	
6	(a) $s = ut + \frac{1}{2}at^2$	eqn	[1]		
	Either: $22.5 = 2.5(7) + \frac{1}{2}(a)(7)^2$	subs	[1]		
	$a = 0.204 \text{ km h}^{-2}$		[1]		
	$a = \frac{0.204 \times 1000}{(3600)^2}$		[1]		
	or				
	$22500 = 2500(t) + \frac{1}{2}(a)(t)^2$	conv km – m and any correct subs of s, u and t	[1]		
	$22500 = 2500(7) + \frac{1}{2}(a)(7 \times 3600)^2$	time subs	[1]		
	$a = 1.57 \times 10^{-5} \text{ ms}^{-2}$	ans	[1]	[4]	
	(b) (i) $v^2 = u^2 + 2as$ $0 = u^2 + 2(-1.2 \times 10^{-3})(950)$	eqn or subs	[1]		
	$u = 1.51 \text{ m s}^{-1}$		[1]		
	$1.51^2 + 0.49^2 = v^2$ (ecf u)		[1]		
	$v = 1.59$		[1]		
	angle = 72° (ecf v)		[1]	[5]	
	(ii) $v = u + at$	eqn	[1]		
	$t_v = 1.26 \times 10^3 \text{ s}$	ans	[1]		
	Total time = $2 t_v (2.52 \times 10^3)$		[1]		
	$s = vt$		[1]		
	$s = 1233 \text{ m}$		[1]	[5]	14
7	(a) $KE = 0.5mv^2$ $v^2 = 25^2 \text{ (ms}^{-1}\text{)}$ and $m = 1940 \text{ (kg)}$	subs	[1] [1]		
	$KE = 6.06 \times 10^5 \text{ (J)}$		[1]	[3]	
	(b) (i) $t = 180 \times 10^3 / 8.3 = 2.17 \times 10^4 \text{ s}$		[1]		
	$P = 0.12(96) = 11.52 \text{ (kW)}$		[1]		
	$E = Pt = (11.52 \times 10^3)(2.17 \times 10^4)$		[1]		
	$E = 2.5 \times 10^8 \text{ (J)}$		[1]	[4]	
	(ii) $E \text{ input} = 3.3 \times 10^8$ (ecf b(i)) or $0.75 (3.6 \times 10^6)$		[1]		
	Units used = $(3.33 \times 10^8) / (3.6 \times 10^6) = 92.6$		[1]		
	Cost = £14.81		[1]	[3]	
	(c) To reduce CO_2 emissions (international commitment)/harmful gas emissions/atmospheric pollution To conserve supplies of fossil fuels/reduction in use		[1] [1]	[2]	12

8	(a)	Statement of first law Reference to 'resultant' Comparison: resultant force is zero on both objects Contrast: rock has no force acting on it car driving force = air resistance or resistive forces	[1] [1] [1] [1] [1]	[5]	AVAILABLE MARKS	
	(b)	Statement of Newton's 3rd law e.g. $ F_{\text{earth}} = F_{\text{beam}} $ or $f = ma$ 1619 (N) from $f = ma$ $2.71 \times 10^{-22} (\text{m s}^{-2})$ Direction: upwards/towards the beam	[1] [1] [1] [1]	[4]	9	
9	(a)	$p = mv$ $p = (57 \times 10^{-3})(-18)$ $p = (-)1.03 (\text{kg m s}^{-1})$	[1] [1] [1]	[3]		
	(b)	Impulse = area under graph $\text{Impulse} = \frac{1}{2}(0.6)(8.2)$ $\text{Impulse} = 2.46 (\text{N s})$	[1] [1] [1]	[3]		
	(c)	$Ft = mv - mu$ $2.46 = 0.057[(v) - (-18)]$ $v = 25 (\text{m s}^{-1})$ (using 2.5 N s gives 26 m s^{-1})	[1] [1] [1]	[3]	9	
10	(a) (i)	Opposition to current flow within the cell		[1]		
	(ii)	$1.38 = 1.52 - (0.636)r$ $r = 0.220 (\Omega) = 220 \text{ m}\Omega$	correct subs [1] [1]	[2]		
	(b) (i)	$\frac{1}{R_{\text{effective}}} = \frac{1}{6} + \frac{1}{4}$ $R_{\text{effective}} = 2.4 \Omega$ $R_{\text{lower}} = 2.4 + 4.6 = 7 \Omega$ (ecf 2.4) $R_{\text{upper}} = 4.5 + 2.5 = 7 \Omega$ $R_{\text{total}} = 3.5 \Omega$ (ecf R_{lower})	[1] [1] [1] [1] [1]	[5]		
	(ii)	$R_{\text{total}} + R_{\text{internal}} = 3.8 \Omega$ (ecf R_{total}) $I_{\text{total}} = \frac{V}{R} = \frac{1.52}{3.8(\text{ecf})} = 0.4\text{A}$	[1] [1] [1]	[2]		
	(iii)	$I_{\text{lower}} = 0.2\text{A}$ (ecf 0.5 I_{total}) $I_{6 \Omega} = 0.08$ (ecf $0.4 \times I_{\text{lower}}$)	[1] [1] [1]	[2]	12	
					Total	100