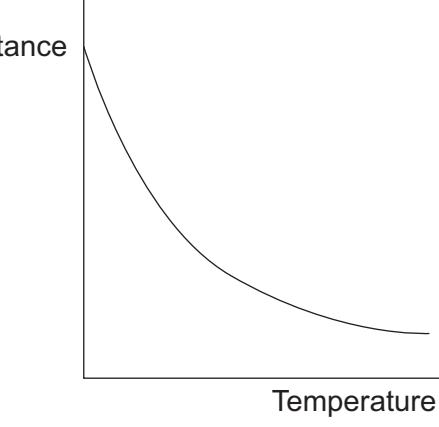


ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2019

Physics
Assessment Unit AS 1
assessing
Forces, Energy and Electricity

[SPH11]

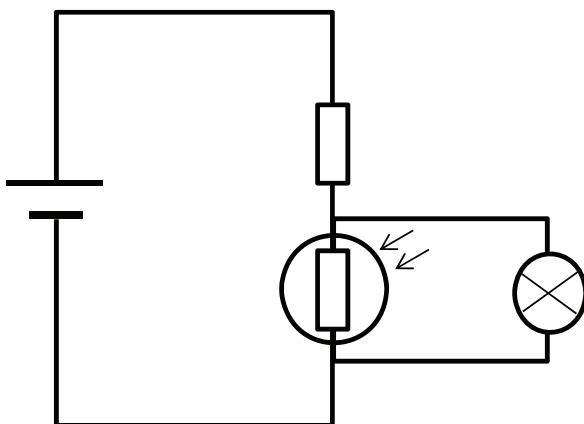
TUESDAY 14 MAY, MORNING



**MARK
SCHEME**

1	(a)	(i)	Units from which all other units are derived	[1]	AVAILABLE MARKS	
		(ii)	Metre [1], kelvin [1], mole [1], candela [1] (Any three) (Accept symbols)	[3]		
		(iii)	Valid equation Base units of 2 terms correct $\text{kg m}^2 \text{s}^{-2}$	[1] [1] [1]	[3]	
	(b)	(i)	$G = 1 \times 10^9$ 1 hour = 3600 s	[1] [1]	[2]	
		(ii)	energy of each = $84700 \times 3.6 \times 10^{12} / 32$ $p = \frac{E}{t}$ or power = $\frac{9.53 \times 10^{15}}{31536000}$ Power of each = $3.02 \times 10^8 \text{ W}$	[1] [1] [1]	[3]	12
2	(a)		Energy cannot be created or destroyed but can be changed from one form to another	[1]		
	(b)	(i)	$KE = \frac{1}{2}mv^2$ $KE = \frac{1}{2} \times 0.156 \times 19.6^2$ $KE = 30.0 \text{ J}$	[1] [1] [1]	[3]	
		(ii)	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ $30.0 - 0 = 80 \times s$ $s = 0.375 \text{ m}$ (SE: 0.75 [1]/[2])	[1] [1]	[2]	
		(iii)	$P = Fv$ $P = 80 \times (19.6/2)$ $P = 784 \text{ W}$ SE = 1568 W scores [2]/[3]	[1] [1] [1]		
			Alternative (iii):			
			$P = F \times \frac{s}{t}$ Time = 38.3 ms 784 W	[1] [1] [1]	[3]	9

				AVAILABLE MARKS
3	(a) (i) The acceleration of a body is proportional to the (resultant) force and inversely proportional to the mass and acts in the same direction as the (resultant) force Resultant included	[1] [1] [1]		
	Alternative:			
	Force proportional to (or equal to) rate of change of momentum	[1]		
	Resultant force	[1]		
	Direction	[1]	[3]	
	(ii) Resultant force is up so reaction is larger than (normal) weight	[1] [1]	[2]	
(b) (i) Total m of lift and passengers = 1200 or $W = 11772N$	[1]			
	$T = 11260N$	[1]		
	512N	[1]		
	Downward	[1]	[4]	
	(ii) $F_{\text{resultant}} = ma$ or subs correct subs, correct combination of F and M. $a = 0.427 \text{ ms}^{-2}$	[1] [1] [1]	[3]	12
4	(a) Constant velocity/zero force/zero acceleration in one plane and constant acceleration/force in a perpendicular plane	[1] [1]	[2]	
(b) (i) vertical component = 7.91 ms^{-1} horizontal component = 9.42 ms^{-1} (if left as Sin and Cos [1]/[2])	[1] [1]	[2]		
	(ii) $v^2 = u^2 + 2as$ $0 = 7.91^2 - 2 \times 9.81 \times s$ $s = 3.19 \text{ m}$	[1] [1] [1]	[3]	
	(iii) $v = u + at$ $0 = 7.91 - 9.81t$ $t = 0.806 \text{ s}$	[1] [1] [1]	[3]	
	(iv) $s = ut$ $s = 9.42 \times 1.612$ $s = 15.2 \text{ m}$ (SE 7.6m [2]/[3])	[1] [1] [1]	[3]	13
5	(a) (i) impulse = $mv - mu$ = $0 - 87 \times 7.92$ = 689 Ns	[1] [1] [1]	[3]	
	(ii) impulse = Ft $689 = F \times 4.8 \times 10^{-3}$ $F = 1.44 \times 10^5 \text{ N}$	[1] [1] [1]	[3]	
	(b) bend legs/crumple Increase (impact) time Decrease impact/force	[1] [1] [1]	[3]	9


6	(a)	AVAILABLE MARKS	
	(i)		[1]
	(ii)	Dist = area Dist = 49.08 Area = $(\frac{1}{2} \times v \times 5) + (8.2 \times v) + (\frac{1}{2} \times v \times 5)$ or $13.2v$ $v = 3.72 \text{ ms}^{-1}$ (SE 3.41 ms^{-1} [3]/[4])	[1] [1] [1] [1] [4]
	(b)		
		[1] for straight section [1] for 1st curve increasing gradient [1] for 2nd curve decreasing to horizontal [1] for constant acceleration positive [1] for zero acceleration [1] for constant deceleration, back to zero same size approx	[6]
			11
7	(a)	$Q = 18 \times 10^{19} (1.6 \times 10^{-19}) = 28.8 \text{ C}$ $I = \frac{Q}{t}$ $I = 0.48 \text{ A}$	[1] [1] [1] [3]
	(b)	Addition of resistors in series $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$ for resistors in parallel Total R at LHS = 3Ω R_T circuit = 9Ω ecf from their parallel value $V = 4.32 \text{ V}$ ecf R_T	[1] [1] [1] [1] [1] [5]
	(c)	Ratio of currents $2 : 1 : 1$ or V across parallel part = 1.44 V $I = 0.24 \text{ A}$ ecf (a)	[1] [1] [2]
			10

				AVAILABLE MARKS
8	(i) water (bath), thermometer (must have labels) thermistor, ohmmeter (or voltmeter, ammeter, power supply) (correct electrical symbols)	[1] [1]	[2]	
	(ii) Record the reading on the ohmmeter (or voltmeter and ammeter) Record temperature Repeat for 5 sets of valid results Changing the temperature of the water bath each time	[1] [1] [1]	[4]	
	(iii)			
			[1]	
	(iv) As the temperature increases, more electrons break free The current increases so resistance decreases This is greater than the increase in resistance of the metal due to greater vibration of ions within the metal	[1] [1] [1]	[3]	10
9	(a) Chemical energy converted into electrical energy per coulomb of charge passing through the battery (allow unit charge)	[1] [1]	[2]	
	(b) $\frac{1}{R} = \frac{1}{230} + \frac{1}{25}$	[1]		
	$R = 22.5 \Omega$	[1]		
	$\frac{V}{R} = I$ subs $\frac{5.88}{22.5} = 0.26A$	[1]		
	$5.88 = 6 - 0.26r$	[1]		
	$r = 0.46$	[1]	[5]	7

10 (a) $V_{\text{out}} = R_1 V_{\text{in}} / (R_1 + R_2)$ used with sub
 $= (0.8/1.9) \times 12$
 $= 5.05$

[1] [1] [1] [3]

(b) (i)

Input power supply, resistor, LDR in series, symbols correct [1]
 bulb across LDR [1] [2]

(ii) As light level reduces the resistance of the LDR increases [1]
 There is a larger $V_{(\text{out})}$ and the lighting circuit switches on [1] [2]

Total

100