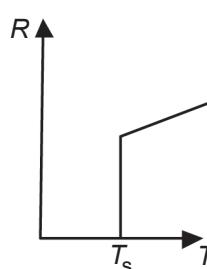


ADVANCED SUBSIDIARY (AS)
General Certificate of Education
January 2011

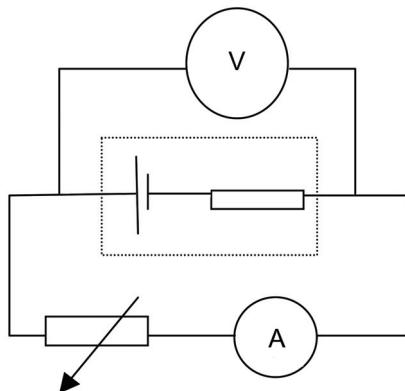
Physics
Assessment Unit AS 1
assessing
Module 1: Forces, Energy and Electricity
[AY111]


WEDNESDAY 12 JANUARY, MORNING

**MARK
SCHEME**

1	(a) (i) Scalars have magnitude (only) [1]	(ii) Vectors have magnitude and direction [2]	AVAILABLE MARKS	
			[1]	[2]
	(b) Velocity Force [–1] per omission/error		[1] [1]	[2]
	(c) (i) Horizontal component = 9.8(2) N Vertical component = 6.88 N		[1] [1]	[2]
	(ii) Weight (29.4 N) – vertical component (6.88 N) ecf Force = 22.5 N (231 N if $g = 10 \text{ N kg}^{-1}$)		[1] [1]	[2]
				8
2	(a) (i) Eqn. $v^2 = u^2 + 2as$ and subs Maximum height = 1.27 m		[1] [1]	[2]
	(ii) Eqn. $s = ut + \frac{1}{2}at^2$ and subs Flight time = 1.02 s S.E. 0.51 s → [1]		[1] [1]	[2]
	(b) (i) t_1 to t_2 constant (positive) acceleration t_2 to t_3 zero or constant velocity t_3 to t_4 constant retardation or deceleration or negative acceleration All three correct [–1] per omission/error			[2]
	(ii) (Area under the curve) [1] (from $t = 0$ to $t = t_4$) [1]		[2]	8
3	(a) The rate of change of momentum of a body is directly proportional to the (applied) force and acts in the <i>direction</i> of the force or $a \propto F$ and $a \propto \frac{1}{m}$ with symbols defined.			[2]
	(b) (i) Eqn. $R - mg = ma$ and subs Reading = 622 N		[1] [1]	[2]
	(ii) Reading = 540 N			[1]
	(iii) Eqn. $mg - R = ma$ and subs Reading = 485 N		[1] [1]	[2]
				7

4	(a) $X + Y = 48 \text{ N}$ $18 \times 0.5 + 1.5 Y = 30 \times 1.0$ (or equivalent) $Y = 14 \text{ N}$ and $X = 34 \text{ N}$	[1] [1] [1]	[3]	AVAILABLE MARKS	
	(b) Takes moments about X with $Y = 0$ $30 \times 1 = ? \times 0.5$ Increase in weight = $60 - 18 = 42 \text{ N}$ (ecf (a))	[1] [1]	[2]	5	
5	(a) (i) $KE = \frac{1}{2} mv^2 = 309\ 000 \text{ (J)}$	[1]			
	(ii) Power = $KE/\text{time} = 22\ 900 \text{ (W)}$ (ecf (i))	[1]			
	(iii) Chemical energy $\times 0.29 = KE$ Chemical energy = $1\ 066\ 000 \text{ (J)}$ (ecf (i))	[1] [1]	[2]		
	(b) Uses $v^2 = 2 gh$ to find vertical height risen $h = 39.4 \text{ m}$ Distance up slope = $h/\sin(8^\circ) = 283 \text{ m}$	[1] [1] [1]			
	[or Work done = change in KE $(800 \times 9.81 \times \sin 8^\circ) S = 309\ 000$ (ecf (a)(i)) $S = 283 \text{ (m)}$]	[1] [1] [1]			
	[or $v^2 = u^2 + 2as$ $0^2 = 27.8^2 + 2(-9.81 \sin 8^\circ)s$ $s = 283$]	[1] [1] [1]	[3]	7	
6	(a) (i) Vertical arrangement: ● ceiling ● 2 wires (If single wire, scores [0]/[3]) ● Load on one wire ● Tensioner (load) on other wire ● Vernier scale or scale and pointer ● ruler [$\frac{1}{2}$] each, round up		[3]		
	(ii) Thickness or diameter + micrometer (screw gauge) (Initial) length + metre rule Extension + suitable instrument (marker may be on diagram) [$\frac{1}{2}$] each and round down		[3]		
	(b) (i) Extension = 1.95 (mm)	[1]			
	(ii) Area = Force / (Young modulus \times strain) $5.5/(1.2 \times 10^{11} \times 7.8 \times 10^{-4})$ $= 5.88 \times 10^{-2} \text{ mm}^2$	[1] [1] [1]	[3]	10	


7	(a) e.g. any metal <i>at constant temperature</i> or named metal at constant temperature Straight line through origin	[1]	[1]	[2]	AVAILABLE MARKS
	(b) (i) The (abrupt) drop of the resistivity of a conductor to zero when a material is cooled below its critical or transition temperature, T_s		[1]		
			[1]		
			[1]	[3]	
	(ii) (Production of) (powerful) (electro)magnets (with no generation of heat energy) Allow mag-lev not MRI		[1]		6
8	(a) (i) Charge = 43.2 (C)		[1]		
	(ii) Number of electrons = 2.7×10^{20} (ecf (i))		[1]		
	(b) (i) Potential difference = 4.8 (V)		[1]		
	(ii) $E = Vit = i^2 Rt$ Energy = 207 (J) (ecf (b)(i) or (a)(i) or 60 mA)	[1]	[1]	[2]	5

9 (a) Working circuit diagram: Cell, (load) variable resistor
Ammeter, voltmeter

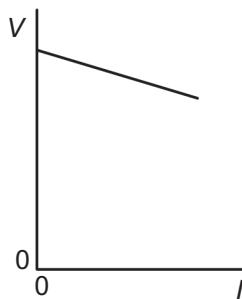
[1]
[1]

[2]

AVAILABLE
MARKS

Experiment: independent marks

Vary load


Read V, A

[1]
[1]

[2]

(b) (i) Analysis: Graph of V against I
Sketch

[1]
[1]

(ii) $r = -\text{gradient}$ (negative essential)
(r from one set of values, [1] only)

[1]

[3]

Quality of written communication

2 marks

The candidate expresses ideas clearly and fluently, through well-linked sentences and paragraphs. Arguments are generally relevant and well structured. There are few errors of grammar, punctuation and spelling.

1 mark

The candidate expresses ideas clearly, if not always fluently. There are some errors in grammar, punctuation and spelling, but not such as to suggest weakness in these areas.

0 marks

The candidate expresses ideas satisfactorily, but without precision. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling are sufficiently intrusive to disrupt the understanding of the passage.

[2]

(c) “lost volts” = $0.02 \times 145 = 2.9 \text{ V}$ or $V = 12.6 - 145 (0.02)$ [1]
Terminal p.d. = $12.6 - 2.9 = 9.7 \text{ (V)}$ [1]

[2]

11

10	(i)	Total circuit resistance = 720Ω hence current = $(18/720 = 0.025 \text{ A}) = 25 \text{ (mA)}$	[1]	[2]	AVAILABLE MARKS
			[1]	[2]	
	(ii)	Potential difference = $0.025 \times 120 = 3 \text{ (V)}$ (ecf)		[1]	
	(iii)	PD between B & D = 9.0 V PD between C & B = 1.5 V hence PD between C and D = 10.5 (V)	[1]	[1]	[2]
	(iv)	Resistance between C & D becomes $420 \times 210/630 = 140 \Omega$ Total circuit resistance = $240 + 60 + 140 = 440 \Omega$ Hence PD = $140 \times 18/440 = 5.72 \text{ (V)}$	[1]	[1]	[3]
					8
				Total	75