

Rewarding Learning

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
January 2014

Centre Number

71

Candidate Number

--

Physics

Assessment Unit AS 1

assessing

Module 1: Forces, Energy and Electricity

[AY111]

WEDNESDAY 15 JANUARY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer **all eleven** questions.

Write your answers in the spaces provided in this question paper.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

INFORMATION FOR CANDIDATES

The total mark for this paper is 75.

Quality of written communication will be assessed in Question 10.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.

Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.

Total Marks	
-------------	--

1 (a) Complete **Table 1.1** to show six of the fundamental quantities and their SI base units.

Table 1.1

Quantity	SI base unit
mass	kilogram
	metre
time	
current	
	kelvin
	mole

[2]

(b) The joule is an SI derived unit. Express the joule in SI base units.

Base units = _____

[2]

(c) Two forces of 3.0 N and 7.0 N act on a body M. The forces are at right angles to each other as shown in **Fig. 1.1** (not to scale).

Fig. 1.1

On **Fig. 1.1** sketch the resultant of the two forces.

By calculation or by the use of a scale drawing, determine the magnitude and direction, to the horizontal, of the resultant force on the body M.

Magnitude = _____ N

Direction = _____ ° to the horizontal

[2]

Examiner Only	
Marks	Remark

2 (a) One method to determine the acceleration of free fall, g , in the laboratory uses an accurate timer and a small sphere.

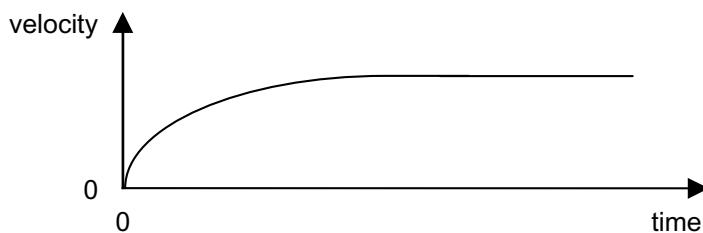
(i) Name any other apparatus needed to determine g .

[1]

(ii) Outline the method and state the measurements required to measure g accurately.

[2]

(iii) Explain how these measurements may be used to find the value of g .



[2]

(b) A parachutist jumps from an aeroplane and free falls before deploying his parachute. **Fig. 2.1** illustrates how his downward velocity varies with time **during free fall**.

Fig. 2.1

Describe and explain the motion experienced by the parachutist during free fall.

[2]

Examiner Only	
Marks	Remark

3 When a golf ball is struck it follows a parabolic path. On one shot, the ball leaves the golf club at an angle of 49° to the horizontal and a speed of 34 ms^{-1} . Assume that the influence of air resistance and ball spin is negligible.

(a) Calculate the time taken by the ball to reach its maximum height.

Examiner Only	
Marks	Remark

Time taken = _____ s [3]

(b) Calculate the horizontal distance between the point where the ball was struck and where it hits the ground. Assume the ground to be level.

Distance = _____ m [3]

4 (a) State Newton's Second Law of Motion.

[2]

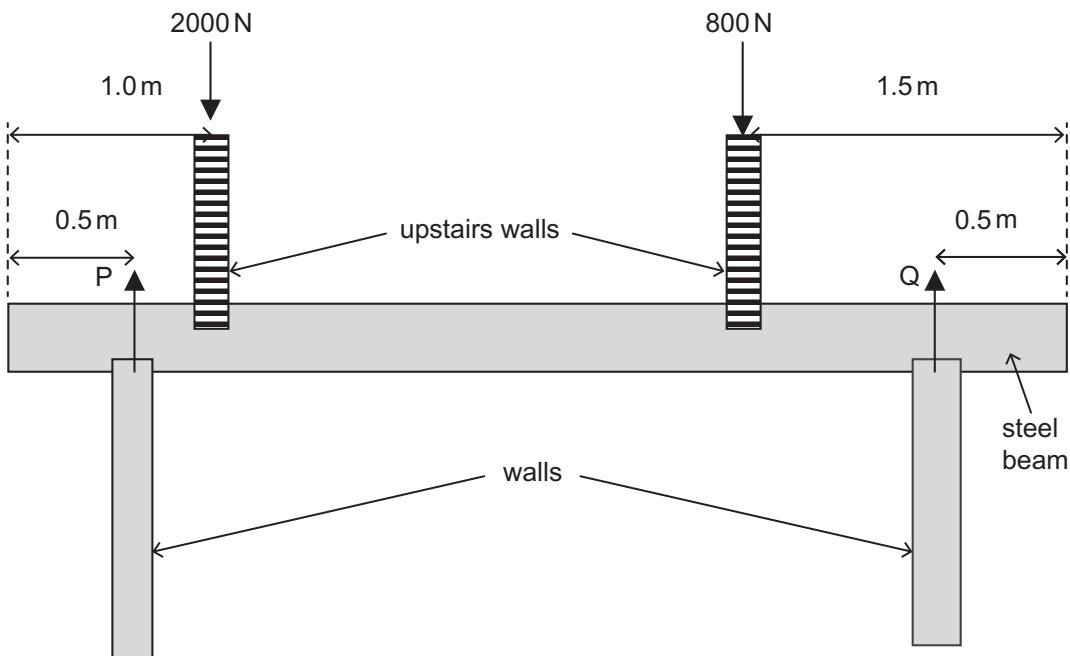
Examiner Only

Marks

Remark

(b) A driver reacts to a hazard when at a speed of 18 m s^{-1} (about 40 miles per hour). His reaction time is such that he travels 12 m before the brakes are applied. Under ideal conditions the car then travels a further 24 m before coming to rest.

(i) Calculate the average braking force exerted while the car travels the 24 m before coming to rest if the car and passengers have a total mass of 880 kg.


Braking force = _____ N [3]

(ii) Under wet conditions the braking force is reduced **by** 40%. Find the total stopping distance, in the wet, from when the hazard is seen.

Stopping distance = _____ m [3]

5 When a house is extended a steel beam may be inserted between two adjacent walls. The beam is used to support two upstairs walls as shown in **Fig. 5.1**.

The upstairs walls exert loads of 2000 N and 800 N. The weight of the uniform steel beam is 8000 N and its length is 6.0 m.

Fig. 5.1

(i) Calculate the total upward force provided by the two walls.

Total force = _____ N [1]

(ii) Calculate the magnitude of each of the upward forces, P and Q as shown in **Fig. 5.1**, exerted on the steel beam.

P = _____ N

Q = _____ N

[3]

Examiner Only	
Marks	Remark

6 (a) State the Principle of Conservation of Energy.

[1]

(b) An aircraft of mass 45 000 kg approaches an airport at an altitude of 8000 m with a velocity of 140 m s^{-1} . During the descent the velocity is reduced to 80 m s^{-1} and the altitude to 700 m. Depending on conditions this will take 15 minutes.

(i) Calculate the loss in kinetic energy during this descent (you may assume that the mass change due to fuel usage is negligible).

Loss in kinetic energy = _____ MJ [2]

(ii) Calculate the loss in potential energy during this descent.

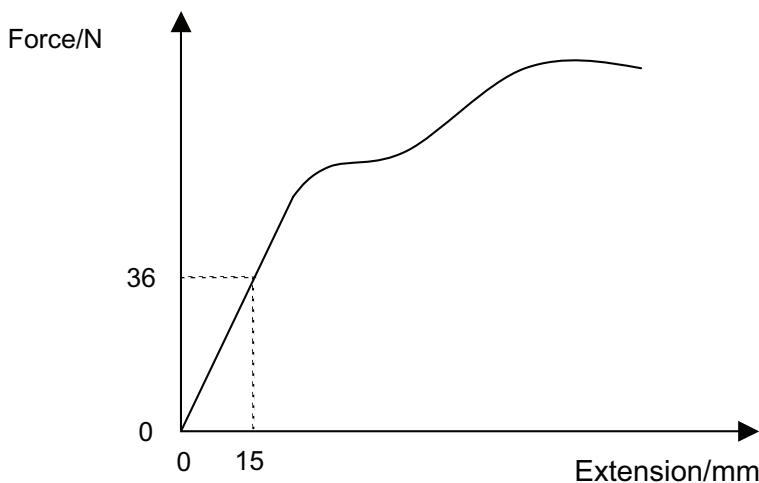
Loss in potential energy = _____ MJ [2]

(iii) The total energy loss is dissipated as heat and sound. Calculate the energy dissipated per second, in kW, into the atmosphere during this descent.

Energy dissipated per second = _____ kW [2]

Examiner Only	
Marks	Remark

7 (a) State Hooke's Law.



[2]

Examiner Only	
Marks	Remark

(b) A student performs an experiment to investigate the extension of a thin metal wire and to find the Young modulus of the wire. She plots a graph of the applied force and the extension produced. The graph is shown in **Fig. 7.1**.

Fig. 7.1

(i) On the graph identify the limit of proportionality as a point labelled **A**, and the elastic limit as a point labelled **B**. [2]

(ii) The wire has diameter 0.23 mm and its unstretched length is 2.0 m. Determine the Young modulus of the material from which the wire is made.

Young modulus = _____ Pa

[3]

8 (a) Define the electromotive force (e.m.f.) of a battery.

[2]

Examiner Only

Marks

Remark

(b) A car battery has internal resistance $27.0\text{ m}\Omega$ and e.m.f. 12.6 V . When the headlights and sidelights of the car are switched on the current drawn from the battery is 11.2 A .

(i) Calculate the charge which flows round the circuit in 42 minutes.

Charge = _____ C [2]

(ii) Find the terminal potential difference across the battery when these lights are turned on. Express your answer to three significant figures.

Potential difference = _____ V [2]

(iii) Calculate the power delivered to the lights under these conditions.

Power = _____ W [2]

(iv) The sidelights together use a total of 28W. Calculate the power of each of the two headlights.

Examiner Only	
Marks	Remark

Power = _____ W

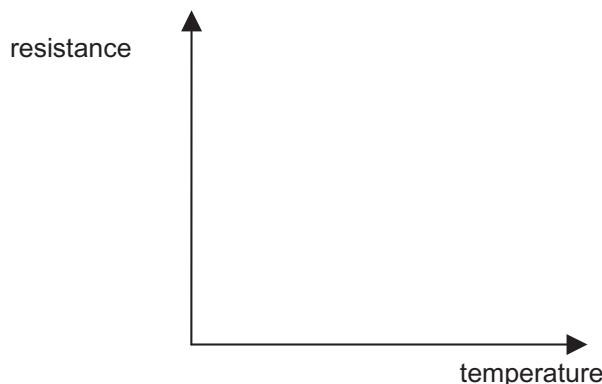
[1]

9 A student is provided with a reel of resistance wire and is asked to determine the resistivity of the material of the wire.

(a) Outline the procedures the student should implement to obtain **reliable** data from which the value for the resistivity of the material can be obtained.

[3]

(b) The student has access to apparatus found generally in school physics laboratories. Identify the measurement that contributes the greatest uncertainty in the value for resistivity. Explain your choice.


[2]

Examiner Only	
Marks	Remark

Where appropriate in this question you should answer in continuous prose. You will be assessed on the quality of your written communication.

10 (a) A thermistor is made from a semiconducting material which has a negative temperature coefficient.

Sketch a graph to show the variation with temperature of the resistance of a negative temperature coefficient (ntc) thermistor.

[1]

(b) Explain why there is a change in resistance of the filament of a light bulb as its temperature increases.

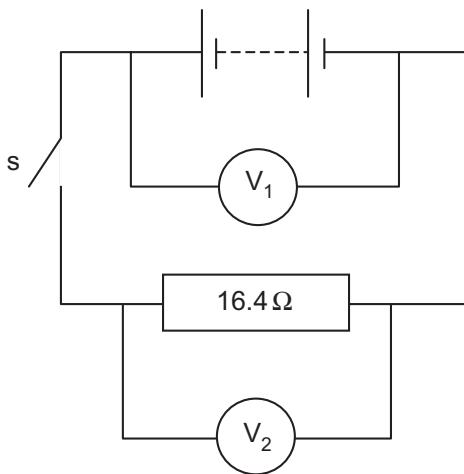
[2]

(c) Some electronic components exhibit a lower resistance when initially turned on. To protect them an ntc thermistor may be placed in series with the component. Explain how a thermistor can protect the component when the circuit is switched on.

[2]

Quality of written communication

[2]


Examiner Only	
Marks	Remark

11 (a) In the circuit shown in **Fig. 11.1** a four cell battery is connected to a 16.4Ω resistance through a switch, s. **Table 11.1** provides the meter readings with the switch open and closed.

Examiner Only	
Marks	Remark

Table 11.1

s	V_1	V_2
open	6.52 V	0.00 V
closed	5.33 V	5.33 V

Fig. 11.1

(i) Determine the average internal resistance of a cell.

Average internal resistance = _____ Ω [4]

(ii) If this circuit was set up in reality, it is unlikely that the voltmeters would read exactly the same value with the switch closed. Which reading would be higher and why?

[1]

(b) A potential divider is used to reduce an 18V supply to 5V for an electronic circuit. Two resistors, R_1 and R_2 , are needed.

Fig. 11.2 shows the arrangement so that the 5V is developed across the resistor R_2 .

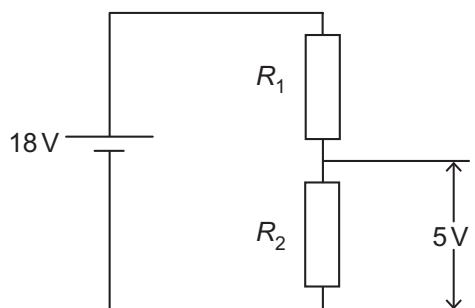


Fig. 11.2

(i) Resistor R_2 has resistance 120Ω . Calculate the resistance of resistor R_1 .

$$R_1 = \text{_____} \Omega \quad [1]$$

(ii) The electronic circuit provides a load of 480Ω in parallel with the resistor R_2 .

- Find the combined resistance of this load and R_2 .

$$\text{Combined resistance} = \text{_____} \Omega \quad [1]$$

- Hence find the actual voltage across the load.

$$\text{Voltage} = \text{_____} \text{V} \quad [2]$$

Examiner Only	
Marks	Remark

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

GCE (AS) Physics

Data and Formulae Sheet

Values of constants

speed of light in a vacuum	$c = 3.00 \times 10^8 \text{ m s}^{-1}$
elementary charge	$e = 1.60 \times 10^{-19} \text{ C}$
the Planck constant	$h = 6.63 \times 10^{-34} \text{ J s}$
mass of electron	$m_e = 9.11 \times 10^{-31} \text{ kg}$
mass of proton	$m_p = 1.67 \times 10^{-27} \text{ kg}$
acceleration of free fall on the Earth's surface	$g = 9.81 \text{ m s}^{-2}$
electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Useful formulae

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ for a constant force
Hooke's Law	$F = kx$ (spring constant k)

Sound

$$\text{Sound intensity level/dB} = 10 \lg_{10} \frac{I}{I_0}$$

Waves

$$\text{Two-source interference} \quad \lambda = \frac{ay}{d}$$

Light

$$\begin{aligned} \text{Lens formula} \quad & \frac{1}{u} + \frac{1}{v} = \frac{1}{f} \\ \text{Magnification} \quad & m = \frac{v}{u} \end{aligned}$$

Electricity

$$\begin{aligned} \text{Terminal potential difference} \quad & V = E - Ir \quad (\text{e.m.f. } E; \text{ Internal Resistance } r) \\ \text{Potential divider} \quad & V_{\text{out}} = \frac{R_1 V_{\text{in}}}{R_1 + R_2} \end{aligned}$$

Particles and photons

$$\text{de Broglie equation} \quad \lambda = \frac{h}{p}$$

AY111INS