

**ADVANCED
General Certificate of Education
2016**

Physics

Assessment Unit A2 2

assessing

Fields and their Applications

[AY221]

THURSDAY 9 JUNE, AFTERNOON

**MARK
SCHEME**

Subject-specific Instructions

In numerical problems, the marks for the intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the final correct answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote correct units for intermediate numerical quantities.

Note that this “correct answer” rule does not apply for formal proofs and derivations, which must be valid in all stages to obtain full credit.

Do not reward wrong physics. No credit is given for consistent substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation. However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on physically correct equation, must gain full credit. Designate this by writing **ECF** (Error Carried Forward) by your text marks.

The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer marks, but 10^n errors (e.g. writing 550 nm as 550×10^{-6} m) count only as arithmetical slips and lose the answer mark.

1	(a)	(i)	Force of attraction	[1]	[3]	AVAILABLE MARKS
			Proportional to (product of) masses	[1]		
			Inversely proportional to square of mass separation	[1]		
		(ii)	$F = \frac{GMm}{d^2}$	[1]		
			Stating $F = mr\omega^2$	[1]		
			Algebra to obtain $T^2 = \frac{4\pi^2 d^3}{GM}$ or equivalent	[1]		
			Penalty [-1] for not using the symbols in Fig 1.1		[3]	
	(b)	(i)	$T^2 = \frac{4\pi^2 d^3}{GM} = \frac{4\pi^2 (5.27 \times 10^8)^3}{(6.67 \times 10^{-11})(5.68 \times 10^{26})}$ subs	[1]		
			$T = 3.91 \times 10^5$ s	ans	[1]	
			$T = 4.52$ days	ECF* T/s	[1]	[3]
			SE 0.071 days [2] and 1.43×10^{-4} days [2]			
		(ii)	$g = \frac{Gm}{r^2}$	equation	[1]	
			$g = \frac{(6.67 \times 10^{-11})(2.31 \times 10^{21})}{(7.64 \times 10^5)^2}$	subs	[1]	
			$g = 0.26$ (N kg $^{-1}$)	ans	[1]	[3]
						12
2	(a)		$E = \frac{Q}{4\pi\epsilon_0 r^2}$	equation	[1]	
			$E = \frac{40 \times 10^{-6} (8.99 \times 10^9)}{(5 \times 10^{-2})^2}$	subs	[1]	
			$E = 1.44 \times 10^8$ (N C $^{-1}$)	ans	[1]	[3]
	(b)		$F = EQ = (1.44 \times 10^8) (60 \times 10^{-6})$	equation or subs	[1]	
			$F = 8640$ (N)/8630 ECF for E	ans	[1]	
			Towards the +40 μ C		[1]	[3]
						6

3	(a) (i)	Charging circuit with no resistance Discharging circuit with resistance Symbol(s) for C, R, supply	[1] [1]	AVAILABLE MARKS	
Sample circuit for full marks					
					[3]
	(ii)	Start discharge and stop clock/record voltage regularly Record voltage every 10 seconds (or 5, 15, 20s)	[1] [1]	[1]	[2]
(b) (i)	Evidence that $V_\tau = 0.37V_0$ $\tau = 56\text{--}60\text{ (s)}$ $56\text{s--}64\text{s}$	ans	[1] [1]	[1]	[2]
	Alternative: 3 correct subs into $V = V_0 e^{-t/CR}$ CR in range 56–64s		[1] [1]		
	(ii) Total capacitance, $C_T = 4.72 \times 10^{-4} \text{ (F)}$ Capacitance = $1.42 \times 10^{-3} \text{ (F)}$	ECF τ ECF* C_T	[1] [1]	[2]	9
4	(a)	$\Phi = BA$ $\Phi = (0.129)\pi(5 \times 10^{-3})^2$ $\Phi = 1.01 \times 10^{-5} \text{ (Wb)}$	eqn subs answer	[1] [1] [1]	[3]
	(b) (i)	$F = BIl$ $F = (0.01)\left(\frac{15}{2.4 \times 10^{-4}}\right)(0.013)$ $F = 8.1 \text{ (N)}$ ECF I and B $S = 93.4 \text{ (N)}$ [2]	eqn subs answer	[1] [1] [1]	[3]
	(ii)	Out of (the plane of) the paper Fleming's LH Rule or RH grip rule & motor effect/motor rule Current flows down the rod (field L → R) or + → - Wrong direction → can only be awarded the second mark	[1] [1] [1]	[3]	9

					AVAILABLE MARKS												
5 (a) $E = BAN/t$ $E = 4.01 \times 10^{-6} (25 \times 10^3) (8.2 \times 10^3) / (1)$ $E = 823 \text{ (V)}$	subs ans	[1] [1] [1]	[3]														
(b) (i) $V_s = \frac{V_p N_s}{N_p} = \frac{(230)(24)}{1104}$ $V_s = \frac{(230)(24)}{1104} = 5 \text{ (V)}$	eqn or subs	[1]															
(ii) $Eff = \frac{P_s}{P_p} = \frac{V_s I_s}{V_p I_p} = \frac{5.06}{5.98}$ $Eff = \frac{(4.6)(1.1)}{(230)(0.026)} = 0.85$	eqn	[1]															
$S \Rightarrow 0.15$ [1]		[1]	[2]	7													
6 (a) (i)	<table border="1"> <thead> <tr> <th>Structure</th><th>Name</th></tr> </thead> <tbody> <tr> <td>1</td><td>(Hot) cathode</td></tr> <tr> <td>2</td><td>positive electrode/anode</td></tr> <tr> <td>3</td><td>x-plates</td></tr> <tr> <td>4</td><td>y-plates</td></tr> <tr> <td>5</td><td>Fluorescent screen</td></tr> </tbody> </table>	Structure	Name	1	(Hot) cathode	2	positive electrode/anode	3	x-plates	4	y-plates	5	Fluorescent screen				
Structure	Name																
1	(Hot) cathode																
2	positive electrode/anode																
3	x-plates																
4	y-plates																
5	Fluorescent screen																
	[1] each – round down		[2]														
(ii) Height of trace/amplitude in context, multiplied by y-amp gain (or equivalent) Accept 'multiplied by' on either mark line		[1] [1]	[2]														
(b) Time in field, $t = \left(\frac{0.12}{5.6 \times 10^7} \right) = 2.14 \times 10^{-9} \text{ s}$	subs or ans	[1]															
Electric field strength, $E = \frac{2500}{0.08} = \frac{V}{d}$		[1]															
$= 31250 \text{ N C}^{-1}$	ans	[1]															
Acceleration $\left(a = \frac{Eq}{m} = \frac{(31250)(1.6 \times 10^{-19})}{9.11 \times 10^{-31}} \right) = 5.49 \times 10^{15} \text{ m s}^{-1}$	ans ECF* E	[1]															
Displacement $\left(s = \frac{1}{2} at^2 = \frac{1}{2} (5.49 \times 10^{15}) (2.14 \times 10^{-9})^2 \right) = 0.0126$	ans ECF* a & t	[1]	[5]	9													

7	(a)	Particle	Mass/u	Charge/C	Lepton number	Baryon number	AVAILABLE MARKS	
		Electron	1/2000 or 1/1840 or 5.5×10^{-4}	-1.6×10^{-19}	+1	0		
		Positron	Consistent with above answer	$+1.6 \times 10^{-19}$	-1	0		
[1] for each line with all responses correct							[2]	
<p>(b) Dees/semicircular electrodes Particles accelerated by voltage between dees Fixed a.c. frequency for voltage Magnetic field perpendicular to plane of particle motion/B-field causes deflection</p> <p>Particles follow a spiral path Radius increases (as velocity increases)</p>								
First four points + either							[5]	
<p>Quality of written communication</p> <p>2 marks The candidate expresses ideas clearly and fluently, through well-linked sentences and paragraphs. Arguments are generally relevant and well structured. There are few errors of grammar, punctuation and spelling.</p> <p>1 mark The candidate expresses ideas clearly, if not always fluently. There are some errors in grammar, punctuation and spelling, but not such as to suggest weakness in these areas.</p> <p>0 marks The candidate expresses ideas satisfactorily, but without precision. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling are sufficiently intrusive to disrupt the understanding of the passage.</p>								
<p>(c) (i) Explanation: All the mass is converted to energy/annihilation/conserve mass/energy Two gamma photons produced to conserve momentum</p>							[2]	
<p>(ii) Calculation: $E = \Delta mc^2$ eqn [1] $E = (9.11 \times 10^{-31})(3 \times 10^8)^2$ subs [1] $E = 8.20 \times 10^{-14}$ (J) ans [1] $E = 513$ (keV) ans ECF* E/J [1] [4]</p>							15	
$S \Rightarrow 1025$ (keV) \rightarrow [3] $S \Rightarrow 256$ (keV) \rightarrow [3]								

					AVAILABLE MARKS
8	(a) (i) $n \rightarrow p + e + \bar{v}_e$ $0 \rightarrow +1 + -1 + 0$ and charge on each side is zero		[1]		
	(ii) $n \rightarrow p + e + \bar{v}_e$ $0 \rightarrow 0 + +1 + -1$ and lepton number on each side is zero		[1]		
	(b) Non-leptons are hadrons/baryons Hadrons (baryons) have a quark structure (leptons are fundamental) or experience the strong force	[1]	[1]	[2]	
	(c) (i) Weak (nuclear) force W^- (boson)	[1]	[1]	[2]	
	(ii) (Decays into) an electron and an antineutrino	[1]			7
9	(a) (i) $\lambda = \frac{0.76}{2.5} = 0.304 \text{ (m)}$	[1]			
	$f = \frac{v}{\lambda} = \frac{18.3}{0.304} = 60.2 \text{ (Hz)}$	[1]			
	$60.2 \times 60 = 3612 = 3600$ to 2 dp	[1]	[3]		
	(ii) $F = m\omega^2 x$ ($F = ma$ and $a = -\omega^2 x$) $\omega = 2\pi f = 120\pi$ (allow 120.4π) = $377 \text{ (rad s}^{-1}\text{)}$ ans $F = 0.12(120\pi)^2(0.086)$ subs ECF* ω or a $F = 1467 \text{ (N)}$ (1480) ans $S = 5.28 \times 10^6 \rightarrow [3]$	eqn(s) [1] $\omega = 2\pi f = 120\pi$ (allow 120.4π) = $377 \text{ (rad s}^{-1}\text{)}$ ans subs ECF* ω or a ans [1]	[1] [1] [1]	[4]	
	(b) (i) $E = ItV$ $0.03 = (13.6 \times 10^{-3})(1.20 \times 10^{-3})V$ p.d. = 1838 (V)	eqn subs ans	[1] [1] [1]	[3]	
	(ii) $I = \frac{Q}{t} \left(= \frac{Ne}{t} \right)$ $Q = 1.63 \times 10^{-5} \text{ (C)}$ $0.0136 = \frac{N(1.6 \times 10^{-19})}{1.2 \times 10^{-3}}$ $N = 1.02 \times 10^{14}$ ECF for Q	eqn subs ans	[1] [1] [1]	[3]	
	(c) $92 = 10 \log_{10} \frac{I}{10^{-12}} = 1.58 \times 10^{-3} \text{ (W m}^{-2}\text{)}$ $\frac{1.58 \times 10^{-3}}{400} = 3.96 \times 10^{-6} \text{ (W m}^{-2}\text{)}$ ECF I/ W m ⁻² ans $\left(\text{not } \frac{92}{400} \right)$	ans ans $\left(\text{not } \frac{92}{400} \right)$	[1] [1]	[3]	16
	$dB = 10 \log_{10} \frac{3.96 \times 10^{-6}}{10^{-12}} = 66$ ans ECF* reduced intensity	[1]	[3]		
				Total	90