

ADVANCED
General Certificate of Education
2017

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Physics

Assessment Unit A2 1

assessing

Momentum, Thermal Physics,
Circular Motion, Oscillations
and Atomic and Nuclear Physics

[AY211]

AY211

WEDNESDAY 21 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. **Do not write with a gel pen.**

Answer **all eight** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Quality of written communication will be assessed in Question 2(b)(i).

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.

Your attention is drawn to the Data and Formulae Sheet which is inside this question paper.

You may use an electronic calculator.

Question 8 contributes to the synoptic assessment required of the specification.

10467.07R

If you need the values of physical constants to answer any questions in this paper they may be found in the Data and Formulae Sheet.

1 The pressure law relates the pressure of a gas to its temperature.

(a) State the pressure law.

[2]

(b) The results from an experiment to investigate this law are shown in the graph of pressure p against temperature θ in Fig. 1.1.

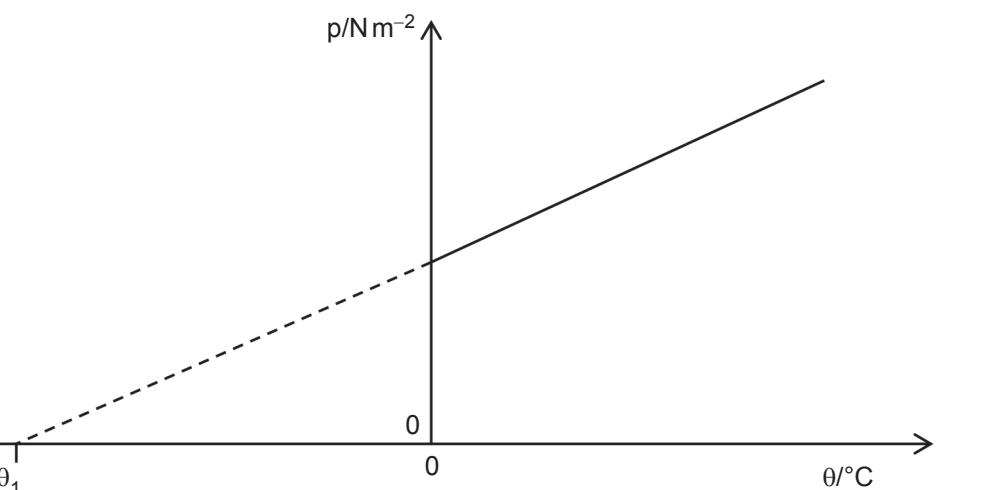


Fig. 1.1

Assume the gas behaves ideally.

(i) State the numerical value of θ_1 .

$$\theta_1 = \text{_____}^{\circ}\text{C}$$

[1]

(ii) State the name given to this value of temperature and describe the motion of the molecules within the gas at this temperature.

[2]

(c) A bubble of air rises from the bottom of a lake, where the temperature is 3°C , to the top of the lake, where the temperature is 12°C . The pressure at the bottom of the lake is four times the pressure at the top of the lake.

Calculate the percentage increase in the volume of the bubble as it rises from the bottom to the top of the lake.

Percentage increase in volume _____ %

[4]

[Turn over

10467.07R

28AY21103

In part (b)(i) of this question you will be assessed on the quality of your written communication. Where appropriate you should answer in continuous prose.

2 (a) The specific heat capacity of aluminium is $900 \text{ J kg}^{-1} \text{ K}^{-1}$. Explain the meaning of this statement.

[1]

(b) A student carries out an experiment to determine the specific heat capacity of aluminium by an electrical method. The student sets up the apparatus shown in Fig. 2.1.

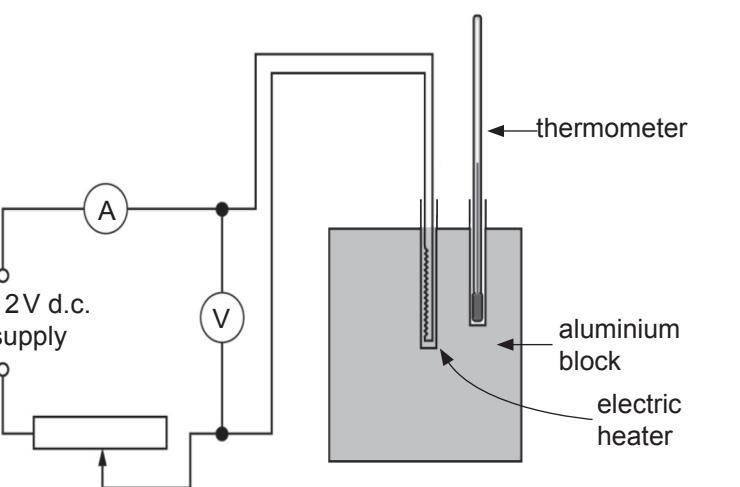


Fig. 2.1

(i) Outline the procedure the student should employ and explain how the results taken are used to determine the specific heat capacity of the aluminium block.

[3]

Quality of written communication

[2]

(ii) Comment on whether the result obtained for the specific heat capacity of aluminium, using the equipment in **Fig. 2.1**, would be higher or lower than the actual value of $900 \text{ J kg}^{-1} \text{ K}^{-1}$. Explain your answer fully.

[2]

104

Turn over

(c) (i) A man hiking in the countryside stops to have a drink of coffee in a metal mug. The mug has a mass of 120 g and is made from aluminium. He pours 250 g of hot coffee, at a temperature of 72.0 °C, from a flask into the mug. What is the highest temperature reached by the mug?
 The mug is initially at a temperature of 14.2 °C and the specific heat capacity of coffee can be assumed to be $4190 \text{ J kg}^{-1} \text{ K}^{-1}$.
 (The specific heat capacity of aluminium is $900 \text{ J kg}^{-1} \text{ K}^{-1}$)

Highest temperature reached by mug _____ °C [3]

(ii) Explain why the correct answer to (c)(i) is closer to the initial temperature of the coffee (72.0 °C) than the initial temperature of the mug (14.2 °C).

[2]

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

[Turn over

10467.07R

28AY21107

3 (a) Fig. 3.1 shows an object being forced to move in a horizontal circle with constant linear speed.

Fig. 3.1

Explain why the object accelerates although moving with a constant linear speed.

[2]

(b) A pilot of mass 90 kg flies a light aircraft of mass 735 kg. The two forces acting on the aircraft are the weight W and the lift force L as shown in **Fig. 3.2**. The pilot must fly the aircraft at an angle of 60° , at a constant linear speed of 56 m s^{-1} , in order to gain the lift required to fly in a horizontal circle of radius R metres.

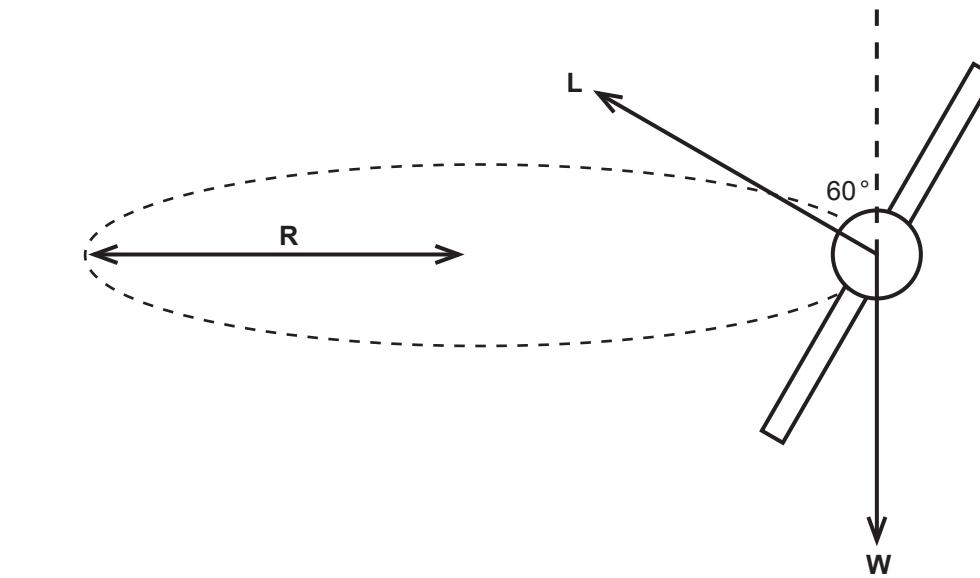


Fig. 3.2

(i) Determine the lift force L acting on the aircraft.

$$L = \underline{\hspace{2cm}} \text{ N}$$

[2]

10467.07R

[Turn over

(ii) Hence determine the acceleration of the aircraft towards the centre of the circle.

Acceleration = _____ m s^{-2}

[3]

(iii) Calculate the radius R of the path of the aircraft.

R = _____ m

[2]

10467.07R

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

[Turn over

10467.07R

28AY21111

4 (a) Define simple harmonic motion.

[2]

(b) Tidal motion can be considered as simple harmonic. The port where a ship must dock has a depth of 15 m at high tide, which occurs at 10.00 am and a depth of 6 m at low tide, which occurs at 4.00 pm. The minimum depth required for the ship to dock is 11 m. The situation is illustrated in **Fig. 4.1**.

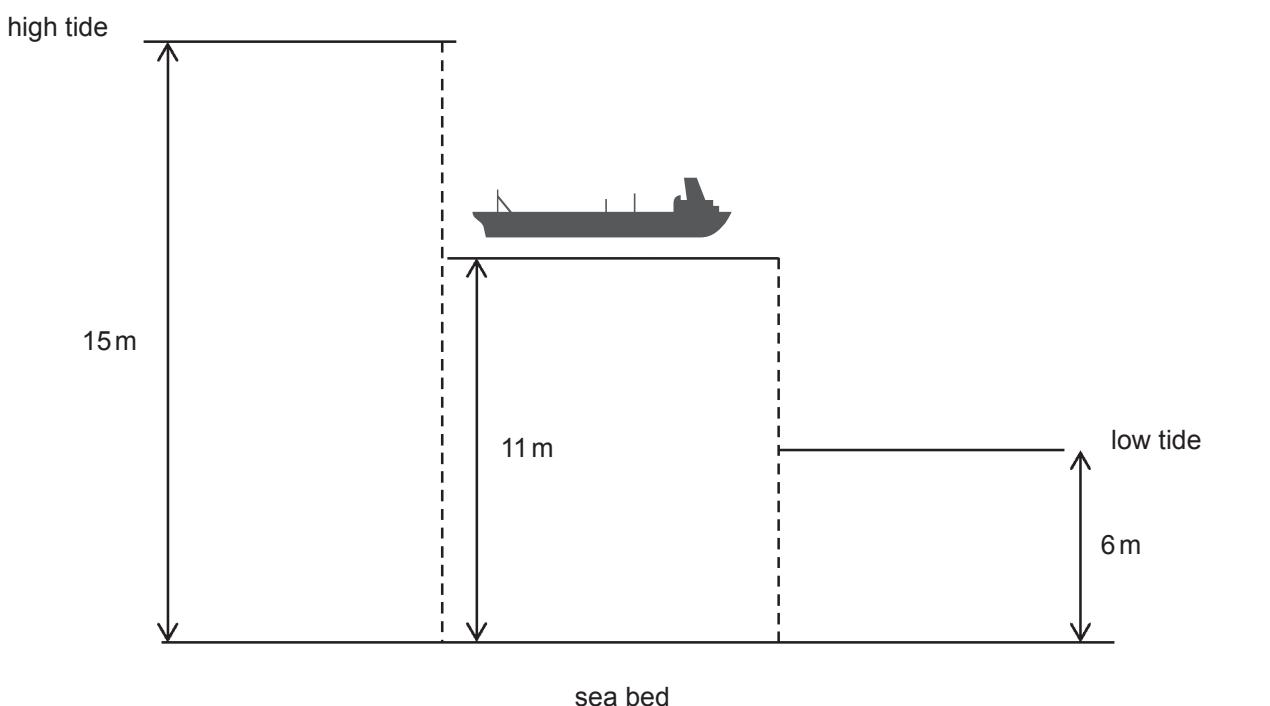


Fig. 4.1

10467.07R

What is the latest time that a ship requiring a depth of 11 m can dock?

Latest time _____

[7]

[Turn over

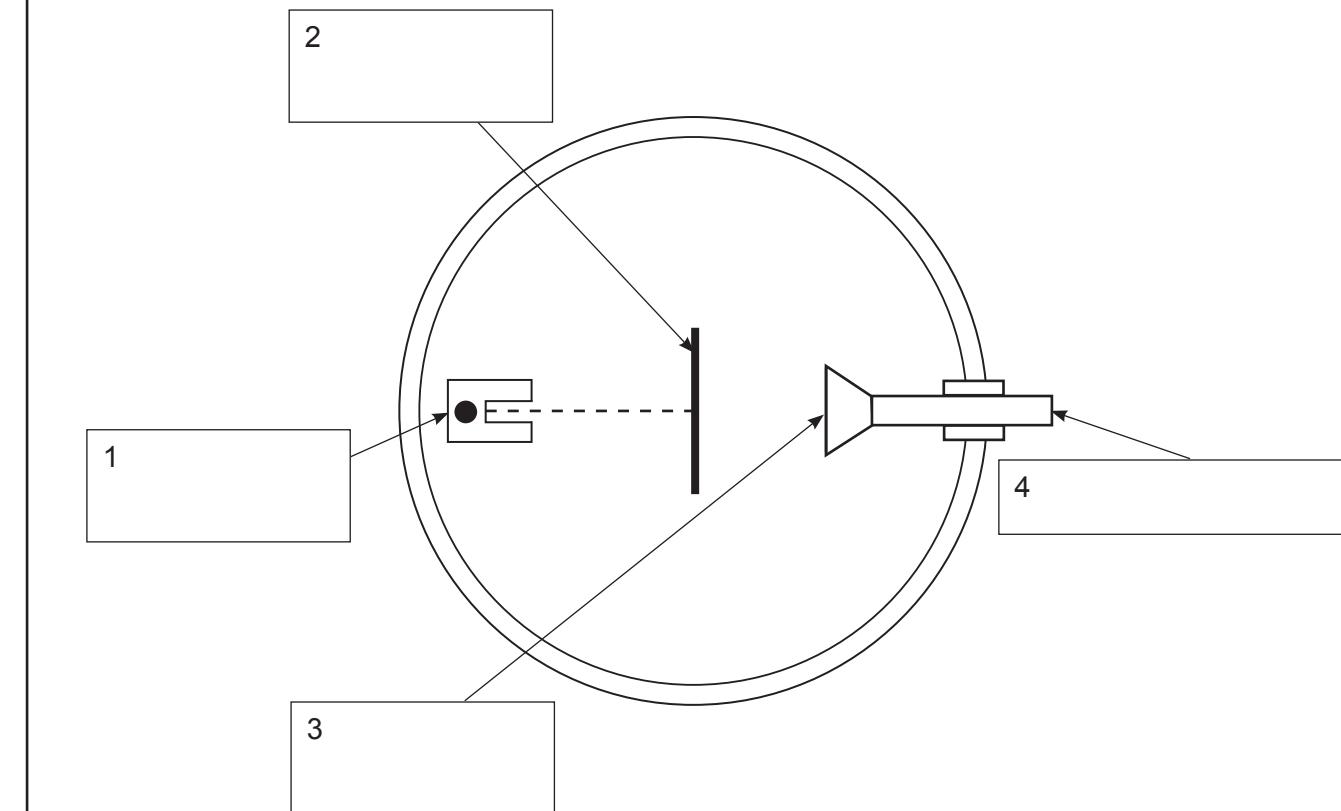
10467.07R

28AY21113

5 (a) A stationary radioactive isotope of bismuth, mass 210 u, decays by the emission of an alpha particle of mass 4 u. The emitted alpha particle has a kinetic energy of 1.30×10^{-12} J.

Determine the recoil velocity of the radioactive nucleus.

Recoil velocity _____ m s^{-1}


[4]

10467.07R

(b) Alpha particles were used in an experiment carried out by Geiger and Marsden in 1909 to establish the nuclear model of the atom.

(i) Correctly label the diagram in **Fig. 5.1** as required in boxes 1, 2, 3 and 4.

Fig. 5.1

[2]

(ii) One of the observations from the experiment was that very few alpha particles (1 in 8000) were backscattered. State fully the conclusions to which this observation led.

[2]

[Turn over

10467.07R

6 (a) (i) What is meant by the radioactive decay of a nucleus?

[1]

(ii) Radioactive isotopes decay according to **Equation 6.1** and **Equation 6.2** which are stated in your Data and Formulae Sheet.

$$A = A_0 e^{-\lambda t} \quad \text{Equation 6.1}$$

$$A = \lambda N \quad \text{Equation 6.2}$$

Complete **Table 6.1**, identifying the symbols and stating their S.I. unit where appropriate.

Table 6.1

Symbol	Quantity	S.I. Unit
A		
λ		
N		

[3]

(iii) On **Fig. 6.1** sketch the graph you would expect to obtain if the value of A was plotted against time t for any isotope obeying **Equation 6.1**.

Fig. 6.1

[1]

10467.07R

(b) In the late 1940s, Willard Libby developed a method to determine the age of an object containing organic material. This method is known as carbon-14 dating and is based on the fact that all living organisms absorb carbon from the atmosphere. When the organism dies it stops absorbing carbon from the atmosphere and the amount of carbon-14 it contains starts to decrease as a result of the decay process.

The half-life of carbon-14 is approximately 5700 years and the activity per kg of living material containing carbon can be assumed to be 250 counts per second.

Estimate the age of a piece of wood, of mass 2.15 g, which has an activity of 136 counts per hour.

Age = _____ years

[4]

10467.07R

[Turn over

28AY21117

7 (a) In 1905 Einstein put forward his theory of special relativity. According to his theory, mass and energy were equivalent as shown in the equation $E = \Delta mc^2$.

(i) Explain what is meant by the **mass defect**, Δm of an atomic nucleus.

[1]

(ii) Explain what is meant by the **binding energy**, E of a nucleus.

[1]

(iii) Use the data in **Table 7.1** to determine the binding energy of the helium-4 nucleus (${}_2^4\text{He}$).

Table 7.1

Mass of helium nucleus	4.00150 u
Mass of proton	1.00728 u
Mass of neutron	1.00867 u

Binding energy = _____ MeV

[4]

10467.07R

(b) Nuclear fusion reactions occur in the Sun. The reactions that occur in the Sun can be summarised by **Equation 7.1**.

Equation 7.1

(i) Explain what is meant by nuclear fusion and state the conditions required for this to occur.

[3]

(ii) The mass of the Sun is 1.99×10^{30} kg with a surface temperature of 5780 K. It radiates energy at a constant rate of 3.75×10^{26} W due to the process of nuclear fusion.

Calculate how long it would take for 0.65 % of its mass to be lost during this process.

(1 year = 3.16×10^7 s)

Time = _____ years

[3]

[Turn over

(iii) Show that the root mean square (r.m.s.) speed of a hydrogen atom on the surface of the sun is $1.2 \times 10^4 \text{ m s}^{-1}$.

(Atomic mass of hydrogen = $1.67 \times 10^{-27} \text{ kg}$).

[2]

10467.07R

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

[Turn over

10467.07R

28AY21121

8 Data Analysis Question

This question contributes to the synoptic requirement of the specification. In your answer you will be expected to bring together and apply principles and concepts from different areas of physics, and to use the skills of physics in the particular situation described.

Atwood Machine

Mathematician, George Atwood, invented the Atwood machine in 1784. It is a simple machine used to verify Newton's second law of motion and consists of two different masses m_1 and m_2 , where $m_2 > m_1$, connected by a light inextensible string of negligible mass over a frictionless pulley. This is illustrated in Fig. 8.1.

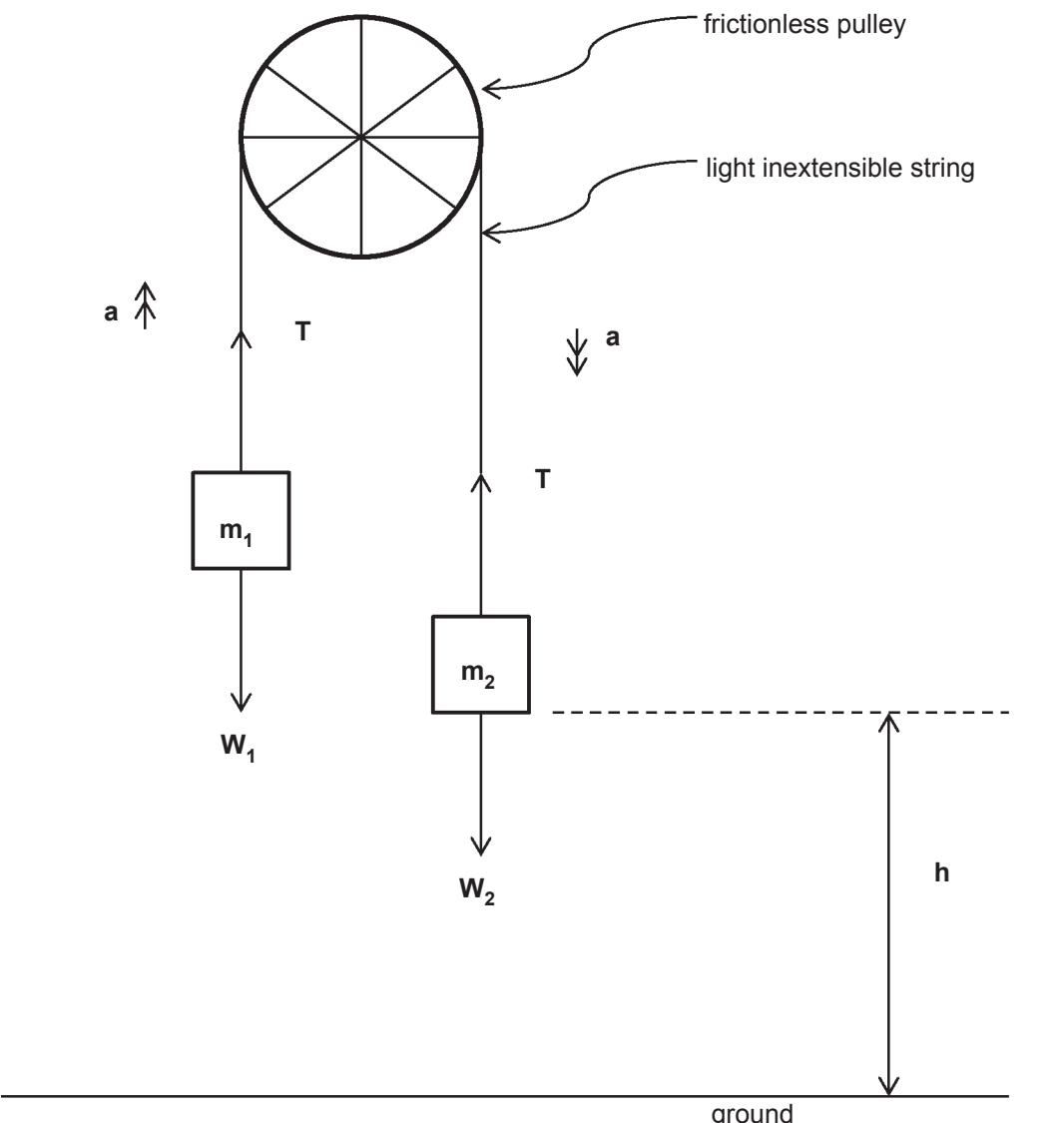


Fig. 8.1

The masses are released from **rest** and the acceleration **a** of both masses is determined by recording the time taken **t** for mass **m_2** to fall through a distance **h** to the ground. **h** is kept constant at **1.50 m** throughout the experiment. This is repeated three times to obtain an average time for each combination of masses. The sum of the masses (**$m_1 + m_2$**) is kept constant but the difference (**$m_2 - m_1$**) is varied. This is achieved by removing mass from **m_1** and adding it to **m_2** each time. The tension in the light inextensible string is **T** newtons.

The acceleration of the masses is given by **Equation 8.1**.

$$a = \frac{(m_2 - m_1)Q}{(m_1 + m_2)} \quad \text{Equation 8.1}$$

where **Q** is a constant.

(a) Apply Newton's second law in the form $F = ma$ to each mass and show how **Equation 8.1** can be obtained. State the value of the constant **Q**.

Q = _____

[4]

10467.07R

[Turn over

(b) Table 8.1 gives a set of results for the time taken t for mass m_2 to fall through distance 1.50 m. The sum of the masses is kept constant at 500 g.

Table 8.1

m_2/g	m_1/g	$(m_1 + m_2)/g$	$(m_2 - m_1)/g$	t/s				$t^2/_\text{s}$	$2h/t^2/_\text{m}$
				t_1	t_2	t_3	t_{av}		
310	190	500	120	1.13	1.13	1.11			
300	200	500	100	1.21	1.24	1.20			
290	210	500	80	1.37	1.39	1.36			
280	220	500	60	1.58	1.55	1.57			
270	230	500	40	1.94	2.00	1.96			
260	240	500	20	2.99	2.97	3.03			

Equation 8.1 can be written in terms of h and t , as shown in Equation 8.2.

$$2(m_1 + m_2)h = (m_2 - m_1)Qt^2 \quad \text{Equation 8.2}$$

(i) By rearranging Equation 8.2, show that a graph of $2h/t^2$ against $(m_2 - m_1)$ will give a straight line through the origin.

[2]

(ii) Complete the three blank columns in the table. Include a unit for the columns headed t^2 and $2h/t^2$. Quote all values to 3 significant figures.

[5]

(iii) Select suitable scales for the $2h/t^2$ and $(m_2 - m_1)/g$ axes for the graph on Fig. 8.2. Plot the points and draw the best-fit line.

[3]

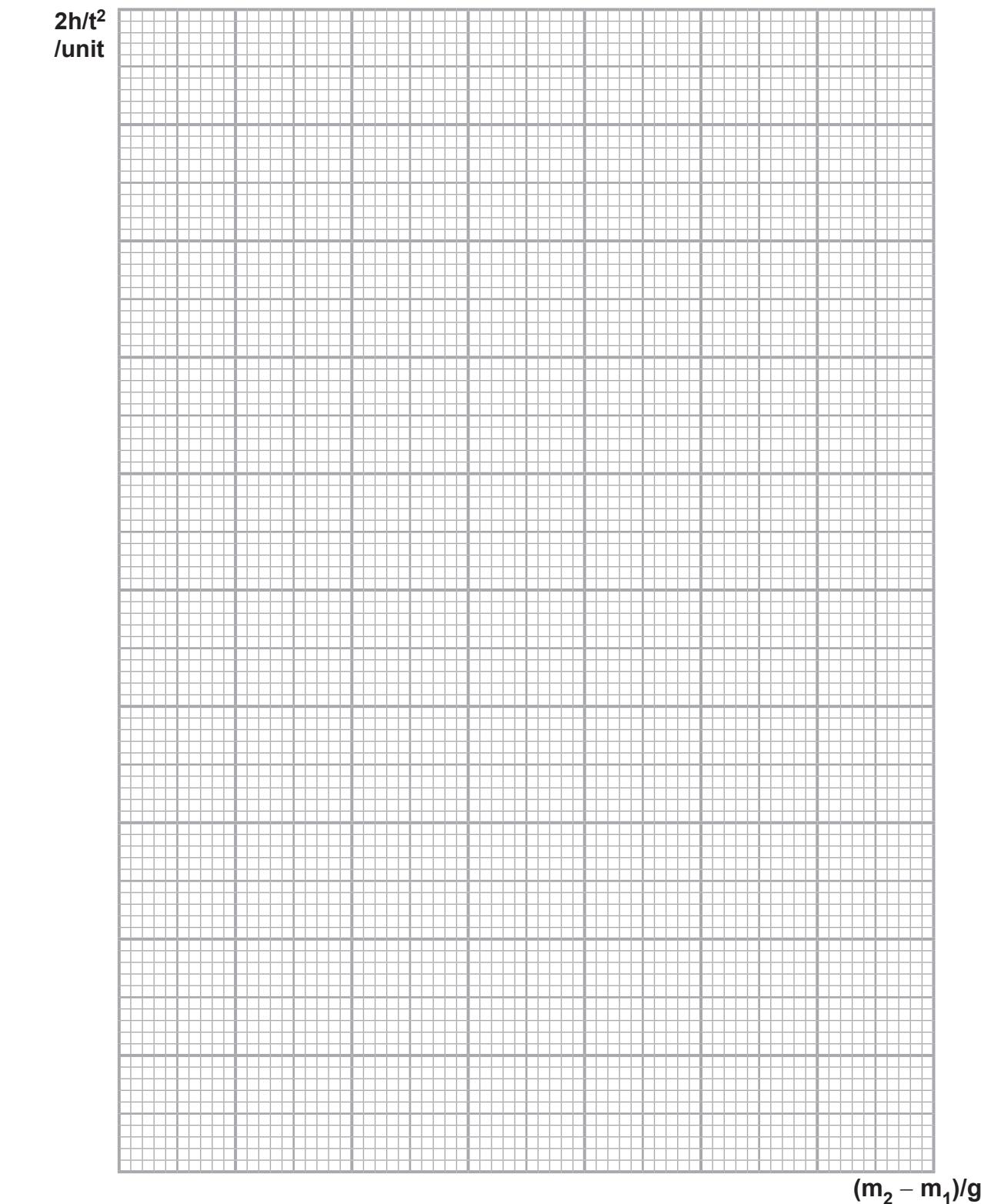


Fig. 8.2

[Turn over

10467.07R

28AY21125

(iv) Determine a value for the constant **Q** from your best-fit line.

State an appropriate unit for your value of **Q**.

Q = _____

Unit: _____

[3]

(v) The masses are changed so that the sum is now kept constant at 300g.
State how this would affect your graph if at all. Explain your answer.

[1]

(vi) For larger values of $(m_2 - m_1)$ there is a trend for the points to be further from the best-fit line. Explain why this trend occurs.

[1]

THIS IS THE END OF THE QUESTION PAPER

BLANK PAGE

DO NOT WRITE ON THIS PAGE

10467.07R

28AY21127

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	

Total Marks	
--------------------	--

Examiner Number

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

218016

28AY21128

GCE Physics

Data and Formulae Sheet for A2 1 and A2 2

Values of constants

speed of light in a vacuum	$c=3.00 \times 10^8 \text{ m s}^{-1}$
permittivity of a vacuum	$\epsilon_0=8.85 \times 10^{-12} \text{ F m}^{-1}$
	$\left(\frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \text{ F}^{-1}\text{m} \right)$
elementary charge	$e=1.60 \times 10^{-19} \text{ C}$
the Planck constant	$h=6.63 \times 10^{-34} \text{ Js}$
(unified) atomic mass unit	$1 \text{ u}=1.66 \times 10^{-27} \text{ kg}$
mass of electron	$m_e=9.11 \times 10^{-31} \text{ kg}$
mass of proton	$m_p=1.67 \times 10^{-27} \text{ kg}$
molar gas constant	$R=8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant	$N_A=6.02 \times 10^{23} \text{ mol}^{-1}$
the Boltzmann constant	$k=1.38 \times 10^{-23} \text{ J K}^{-1}$
gravitational constant	$G=6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
acceleration of free fall on the Earth's surface	$g=9.81 \text{ m s}^{-2}$
electron volt	$1 \text{ eV}=1.60 \times 10^{-19} \text{ J}$

The following equations may be useful in answering some of the questions in the examination:

Mechanics

Conservation of energy	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = Fs$ for a constant force
Hooke's Law	$F = kx$ (spring constant k)

Simple harmonic motion

Displacement $x = A \cos \omega t$

Sound

Sound intensity level/dB $= 10 \lg_{10} \frac{I}{I_0}$

Waves

Two-source interference $\lambda = \frac{ay}{d}$

Thermal physics

Average kinetic energy of a molecule $\frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT$

Kinetic theory $pV = \frac{1}{3}Nm\langle c^2 \rangle$

Thermal energy $Q = mc\Delta\theta$

Capacitors

Capacitors in series $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$

Capacitors in parallel $C = C_1 + C_2 + C_3$

Time constant $\tau = RC$

Light

Lens formula $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$

Magnification $m = \frac{v}{u}$

Electricity

Terminal potential difference $V = E - Ir$ (e.m.f. E ; Internal Resistance r)

Potential divider $V_{\text{out}} = \frac{R_1 V_{\text{in}}}{R_1 + R_2}$

Particles and photons

Radioactive decay $A = \lambda N$

$$A = A_0 e^{-\lambda t}$$

Half-life $t_{\frac{1}{2}} = \frac{0.693}{\lambda}$

de Broglie equation $\lambda = \frac{h}{p}$

The nucleus

Nuclear radius $r = r_0 A^{\frac{1}{3}}$

