

Rewarding Learning

General Certificate of Secondary Education
January 2015

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Further Mathematics

Unit 1

Pure Mathematics

[GMF11]

MV18

FRIDAY 16 JANUARY, AFTERNOON

TIME

2 hours, plus your additional time allowance.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Complete in blue or black ink only.

Do not write with a gel pen.

All working should be clearly shown since marks may be awarded for partially correct solutions.

Where rounding is necessary give answers correct to **2 decimal places** unless stated otherwise.

Answer **all sixteen** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.

Figures in brackets printed at the end of each question indicate the marks awarded to each question or part question.

You may use a calculator.

You are provided with an insert containing the formula sheet, for use with this question paper.

1 Matrices A and B are defined by

$$A = \begin{bmatrix} -2 & 3 \\ 5 & -4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & -7 \\ 4 & -2 \end{bmatrix}$$

Evaluate

(i) A^2 [2 marks]

Answer _____

(ii) $A^2 - 3B$ [2 marks]

Answer _____

2 Solve the equation $x^2 = 14x + 2$ by completing the square.

Give your answer in the form $a \pm \sqrt{b}$, where a and b are whole numbers. [4 marks]

Answer _____

3 If $y = 2x^3 - \frac{1}{4x^5}$ find $\frac{d^2y}{dx^2}$ [4 marks]

Answer _____

4 (i) Solve the equation

$$\sin \theta = 0.75$$

for $0^\circ \leq \theta \leq 180^\circ$ [2 marks]

Answer _____

(ii) Hence solve the equation

$$\sin\left(\frac{x+10^\circ}{2}\right) = 0.75$$

for $0^\circ \leq x \leq 360^\circ$ [3 marks]

Answer _____

BLANK PAGE

(Questions continue overleaf)

5 Matrices P and R are defined by

$$P = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 13 & 4 \\ 7 & 6 \end{bmatrix}$$

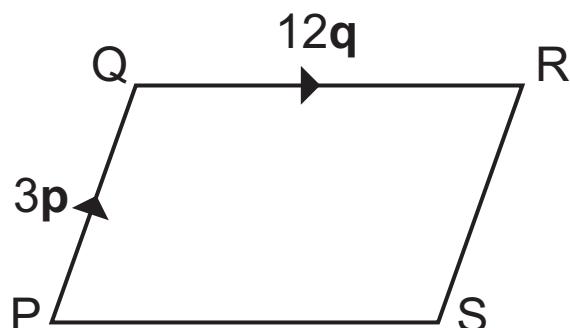
(i) Find the matrix P^{-1} , the inverse of P [2 marks]

Answer _____

(ii) Hence find the matrix \mathbf{Q} such that $\mathbf{PQ} = \mathbf{R}$ [3 marks]

Answer _____

6 Simplify the following expressions


(i) $\frac{3x+1}{2x+1} \div \frac{1}{2x^2-x-1}$ [3 marks]

Answer _____

(ii) $\frac{3x}{x-4} - \frac{2x+1}{x^2-16}$ [4 marks]

Answer _____

7 In the parallelogram PQRS below, \vec{PQ} represents the vector $3\mathbf{p}$ and \vec{QR} represents the vector $12\mathbf{q}$

(i) Express in terms of \mathbf{p} and \mathbf{q}

(a) \vec{PR} [1 mark]

Answer _____

(b) \vec{QS} [1 mark]

Answer _____

A point T is on QS produced such that $\vec{ST} = -5\mathbf{p} + 20\mathbf{q}$

(ii) Find the vector \vec{TR} , giving your answer in its simplest form. [2 marks]

Answer _____

(iii) Given that $\vec{QS} = k \vec{QT}$, where k is a constant, find the value of k [2 marks]

Answer _____

8 Solve the set of simultaneous equations [8 marks]

$$4x + 2y - z = 16$$

$$5x - 3y - z = 3$$

$$14x + 2y - 3z = 40$$

Answer $x = \underline{\hspace{2cm}}$, $y = \underline{\hspace{2cm}}$, $z = \underline{\hspace{2cm}}$

**You may use this page if needed.
(Questions continue overleaf)**

9 (a) Given that $\log_4 16 = 2x$, find the value of x [2 marks]

Answer _____

(b) If $\log_7 2 = p$ and $\log_7 6 = q$, express in terms of p and q

(i) $\log_7 12$ [1 mark]

Answer _____

(ii) $\log_7 21$ [2 marks]

Answer _____

10 At Fitness One Gym there are:

8 women in the Circuits class.

6 more men in the Circuits class than men in the Spinning class.

2 less women than men in the Spinning class.

Let x be the number of men in the Spinning class.

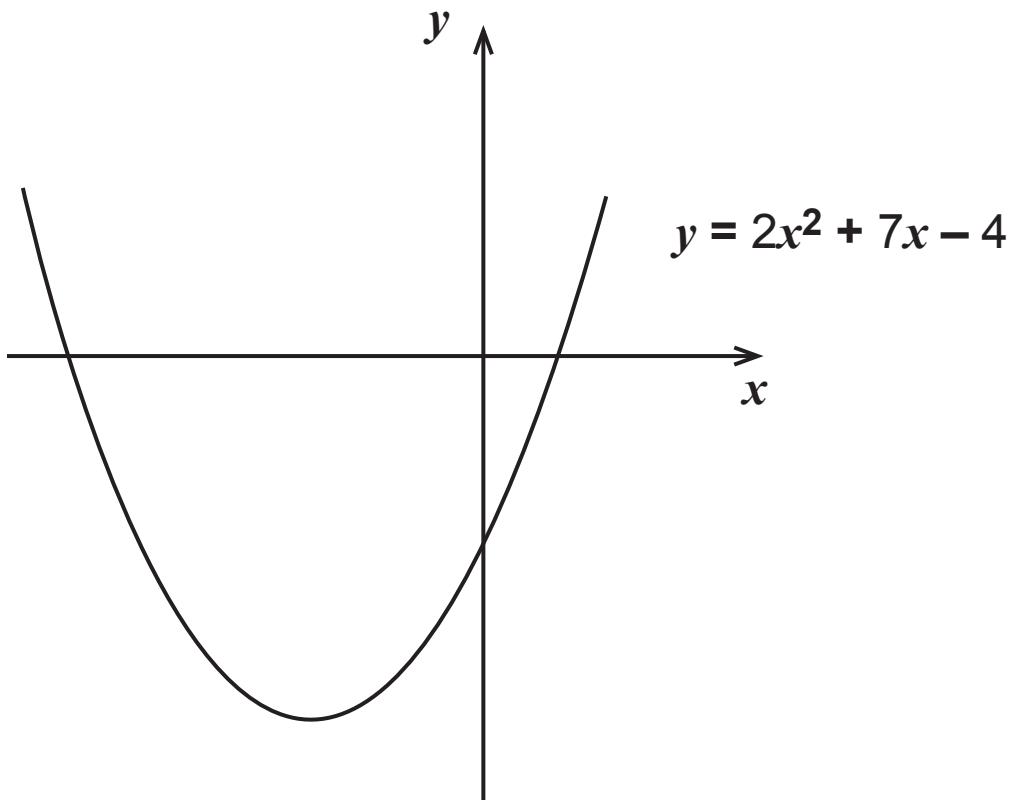
Write down in terms of x

(i) the number of women in the Spinning class, [1 mark]

Answer _____

(ii) the number of men in the Circuits class. [1 mark]

Answer _____


The ratio of men to women in each class is the same.

(iii) Form a quadratic equation in x and hence find the number of men in the Spinning class. [5 marks]

Answer _____

11 The sketch below shows the curve with equation

$$y = 2x^2 + 7x - 4$$

(i) Find the x -coordinates of the points where the curve crosses the x -axis. [2 marks]

Answer _____

(ii) Hence find the area enclosed between this curve, the **negative x -axis** and the y -axis. [5 marks]

Answer _____

12 The point P lies on the curve $y = x^2 + 5x - 1$

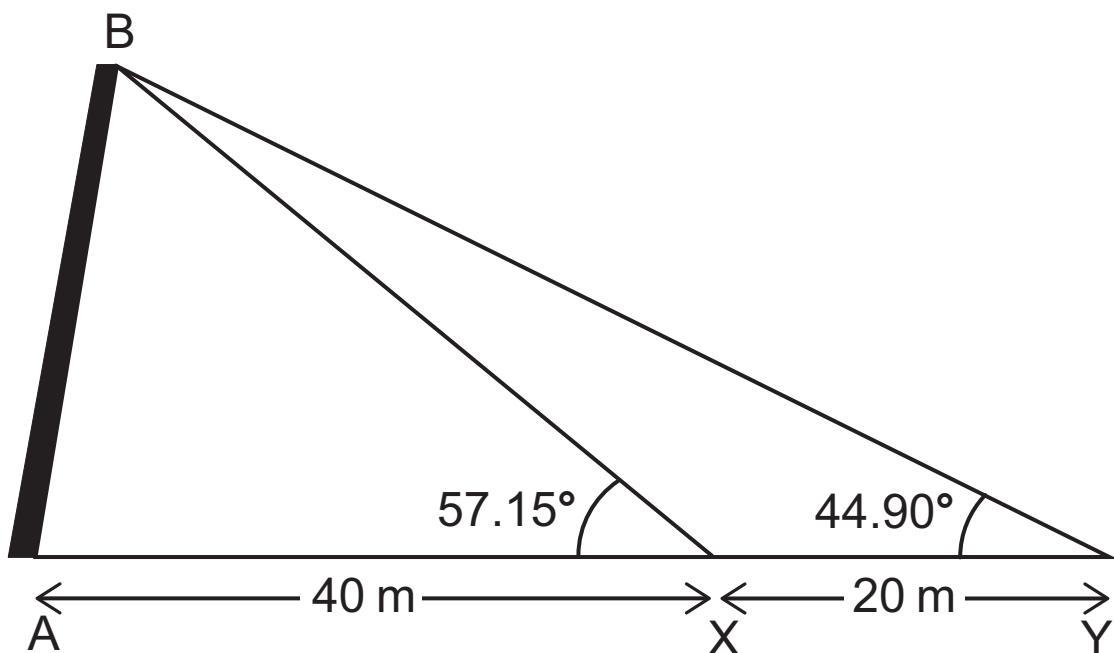
The gradient of the **normal** to the curve at the point P is $\frac{1}{3}$

(i) State the gradient of the **tangent** to the curve at the point P. [1 mark]

Answer _____

(ii) Hence find the coordinates of the point P. [3 marks]

Answer _____


(iii) Find the equation of the tangent to the curve at the point P, giving your answer in the form $y = mx + c$ [2 marks]

Answer _____

13 Two tourists were in the square in front of the Leaning Tower of Pisa, AB, in Italy.

One was at a point X, 40 m from the base of the tower on horizontal ground, and the other was at a point Y, 20 m further out from X. The points A, X and Y were in a straight line and in the same vertical plane as the tower.

The angles of elevation of the top of the tower from X and Y were 57.15° and 44.90° respectively.

Calculate

(i) the size of the angle \hat{XBY} , [1 mark]

Answer _____ $^\circ$

(ii) the distance BX, [2 marks]

Answer _____ m

(iii) the distance AB, from the base to the top of the tower, [2 marks]

Answer _____ m

(iv) the size of the angle \hat{BAX} . [2 marks]

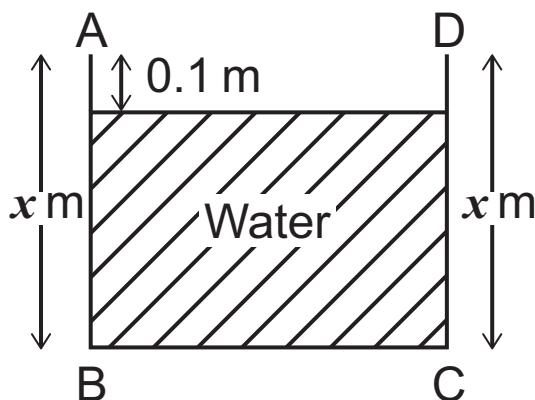
Answer _____ $^{\circ}$

(v) Hence write down the size of the angle by which the tower is leaning from the vertical. [1 mark]

Answer _____ $^{\circ}$

14 Solve the equation [5 marks]

$$2^{3x-2} = 5^{x-1}$$


Answer _____

15 A long sheet of metal, 2m wide, is bent to form a water channel.

The two vertical sides, AB and DC, are of equal length.

The base BC is horizontal. The channel is open at the top.

A cross section of the channel is shown in the diagram below.

The total length of AB, BC and CD is 2m.

The water level in the channel is 0.1 m from the top.

Let x m be the height of the sides of the channel.

(i) Write down the length of the base BC in terms of x
[1 mark]

Answer _____

(ii) Show that the cross-sectional area A of the water is given by

$$A = 2.2x - 2x^2 - 0.2 \quad [2 \text{ marks}]$$

(iii) Find the value of x which will maximise A , proving that it is a maximum area. [3 marks]

Answer _____

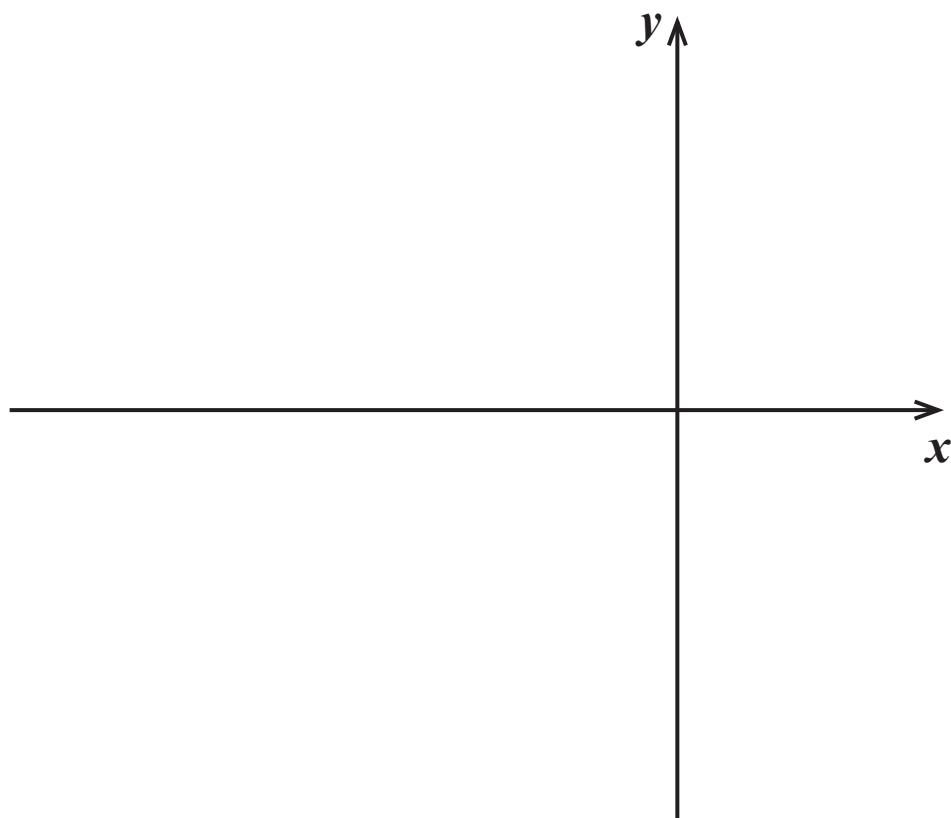
**(iv) Hence find the dimensions of the channel which will give the maximum cross-sectional area of water.
[1 mark]**

Answer _____

16 A curve is defined by the equation $y = 4x - 2x^2 - x^3$

(i) Find the coordinates of the points where the curve crosses the x -axis, giving values correct to 1 decimal place where necessary. [3 marks]

Answer _____


**(ii) Find the coordinates of the turning points of the curve.
[5 marks]**

Answer _____

(iii) Identify each turning point as either a maximum or a minimum point.
You must show working to justify your answers.
[2 marks]

Answer _____

(iv) Sketch the curve on the axes below. Your sketch must show the turning points and where the curve crosses the x -axis. [2 marks]

THIS IS THE END OF THE QUESTION PAPER

Total Marks	<input type="text"/>
-------------	----------------------

Examiner Number

For Examiner's use only	
Question Number	Marks
1	<input type="text"/>
2	<input type="text"/>
3	<input type="text"/>
4	<input type="text"/>
5	<input type="text"/>
6	<input type="text"/>
7	<input type="text"/>
8	<input type="text"/>
9	<input type="text"/>
10	<input type="text"/>
11	<input type="text"/>
12	<input type="text"/>
13	<input type="text"/>
14	<input type="text"/>
15	<input type="text"/>
16	<input type="text"/>

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.