

Rewarding Learning

General Certificate of Secondary Education
2011

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Mathematics

Module N6 Paper 1
(Non-calculator)
Higher Tier
[GMN61]

GMN61

MONDAY 6 JUNE
1.30 pm – 2.45 pm

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper.

Answer **all eighteen** questions.

Any working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.

You **must not** use a calculator for this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 56.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

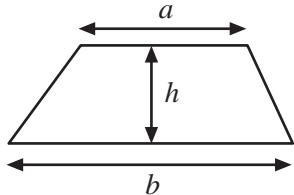
You should have a ruler, compasses, set-square and protractor.

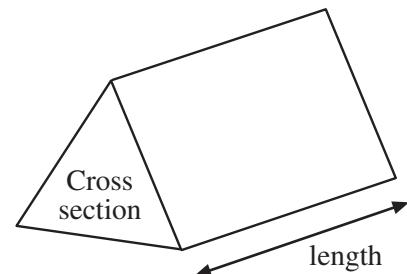
The Formula Sheet is on page 2.

Total Marks	

6395.07R

Examiner Number

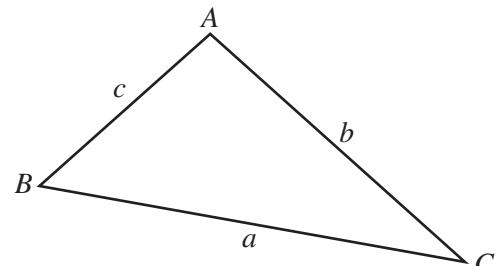

--


J U N E 1 1 G M N 6 1

Formula Sheet

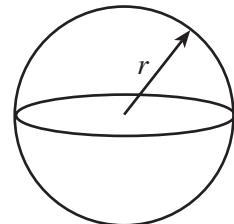
Area of trapezium = $\frac{1}{2} (a + b)h$

Volume of prism = area of cross section \times length

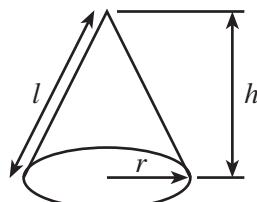


In any triangle ABC

Area of triangle = $\frac{1}{2} ab \sin C$


Sine rule : $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule : $a^2 = b^2 + c^2 - 2bc \cos A$


Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of sphere = $4\pi r^2$

Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = $\pi r l$

Quadratic equation:

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1 Rewrite $c - 2 = 10 - b$ to make b the subject.

Write your answer in its simplest form.

Examiner Only	
Marks	Remark
Total Question 1	

Answer $b =$ _____ [2]

2 (a) Given that $84 \times 356 = 29904$, find

(i)
$$\frac{29904}{8.4}$$

Answer _____ [1]

(ii) 0.84×3560

Answer _____ [1]

(b) Write down the two numbers which are the square roots of 144

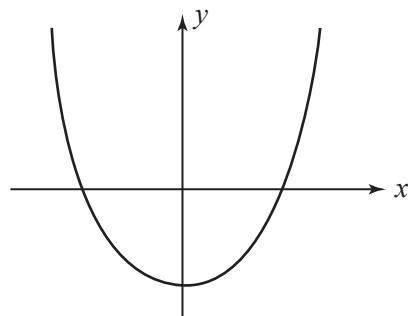
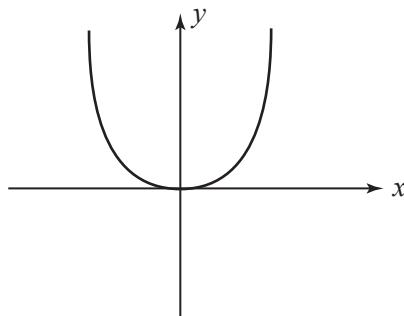
Answer _____, _____ [1]

(c) Estimate
$$\frac{4.9 \times 30.1}{7.8 - 3.85}$$

Answer _____ [2]

Total Question 2	

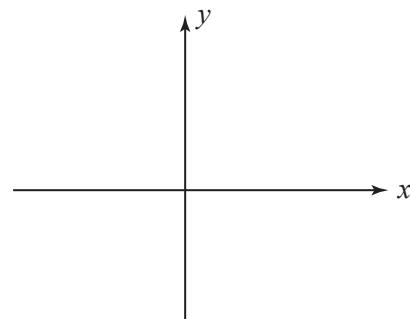
3



$$y = x^2 + 2$$

$$y = x^2 - 2$$

$$y = x^2$$

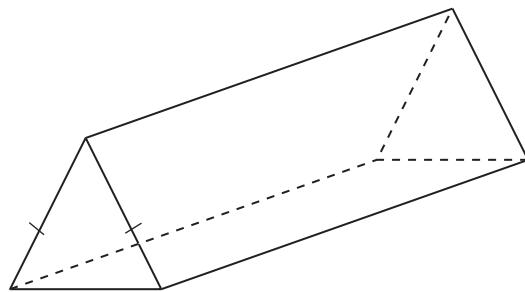
Examiner Only	
Marks	Remark


(a) Below are two graphs. Choose the correct equation from the three listed above to match each graph.

Equation: _____

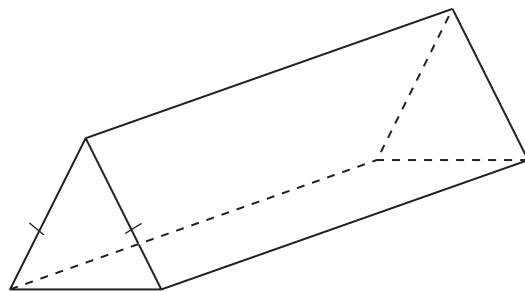
Equation: _____ [2]

(b) Sketch the graph of the remaining equation.


[1]

Total Question 3

6395.07R



4 (a) Draw a plane of symmetry on the prism below.

[1]

(b) Draw a **different** plane of symmetry on the prism below.

[1]

Total Question 4

6395.07R

Turn over

5 (a) Use the formula $A = B^2(8 - C)$ to find the value of A when $B = -3$ and $C = 2$.

Examiner Only

Marks

Remark

Answer _____ [2]

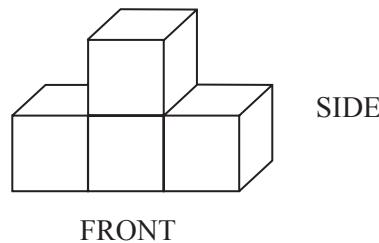
(b) n is an integer. From the expressions

$$2n \quad n^2 + 1 \quad 2n - 1 \quad 2n + 2 \quad n - 1 \quad 2n + 3$$

choose

(i) an expression which will always give an even number,

Answer _____ [1]


(ii) an expression which could give an odd or even number.

Answer _____ [1]

Total Question 5

6 Below is a sketch of a 3-D shape.

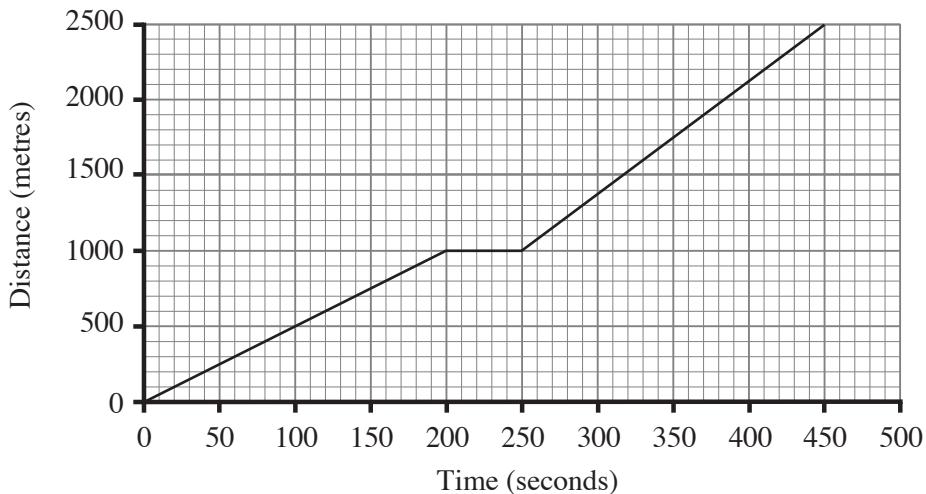
Draw (a) the plan,

[1]

(b) the side elevation.

[1]

Total Question 6


6395.07R

[Turn over

7 The graph illustrates Pete's journey as he cycled from home to school.

Examiner Only	
Marks	Remark
Total Question 7	

(a) Between what times was he cycling at his fastest average speed?

Answer _____ and _____ [1]

(b) He stopped at a shop on the way to school.

Calculate his average speed for the journey **between the shop and the school**.

Answer _____ m/s [2]

(c) Pete's sister Jade, left home **4 minutes** after him, and travelled to the same school by car.

She arrived in school **1 minute** before him.

(i) Show Jade's journey on the graph above. [2]

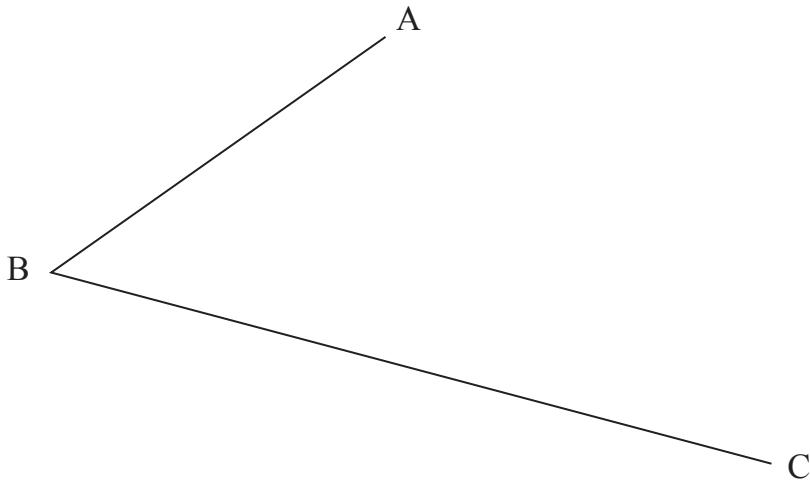
(ii) How far were they **from the school** when Jade overtook Pete?

Answer _____ m [1]

6395.07R

8 Jack divided marbles between himself and Jill in the ratio 4:3

Jack then had 84 marbles.


How many marbles were there in total?

Answer _____ [2]

Total Question 8

9 Use ruler and compasses to construct the bisector of the angle ABC.

You must show all construction lines.

[2]

Total Question 9

10 Simplify

(a) $\frac{m^7}{m \times m^2}$

Answer _____ [2]

(b) $(p^3)^2$

Answer _____ [1]

Total Question 10

6395.07R

Turn over

11 Terry and Trev counted how many car number plates contained the letter Z. They recorded their results as shown.

Terry		Trev	
Number of cars	Number with Z	Number of cars	Number with Z
100	80	261	207

Whose results give the best estimate of the probability of a car number plate containing the letter Z?

Give a reason for your answer.

Answer _____ because _____

[2]

Examiner Only	
Marks	Remark
Total Question 11	

12

P \times \times Q

Examiner Only

Marks

Remark

P and Q are two points which are 7 cm apart.

(a) Using ruler and compasses only, draw the locus of points that are the same distance from P as from Q.

Show all construction lines.

[2]

(b) Shade the region which contains those points which are both closer to P than to Q, and less than 5 cm from Q.

[2]

Total Question 12

6395.07R

[Turn over]

13 (a) k, m and n are all lengths.

Decide whether each of the expressions below represent length, area, volume or none of these.

(i)
$$\frac{\pi k^2}{m-n}$$

Answer _____ [1]

(ii)
$$\frac{1}{2}k\sqrt{m^2 + n^2}$$

Answer _____ [1]

(b) Find the value of x if $\frac{m^x}{n(n+k)}$ represents a length.

Answer $x =$ _____ [1]

Total Question 13

14 (a) Write 0.0000624 in standard form.

Answer _____ [1]

(b) Write down a fraction which is a recurring decimal.

Answer _____ [1]

(c) Rationalise the denominator of $\frac{10}{\sqrt{2}}$

Answer _____ [2]

Total Question 14

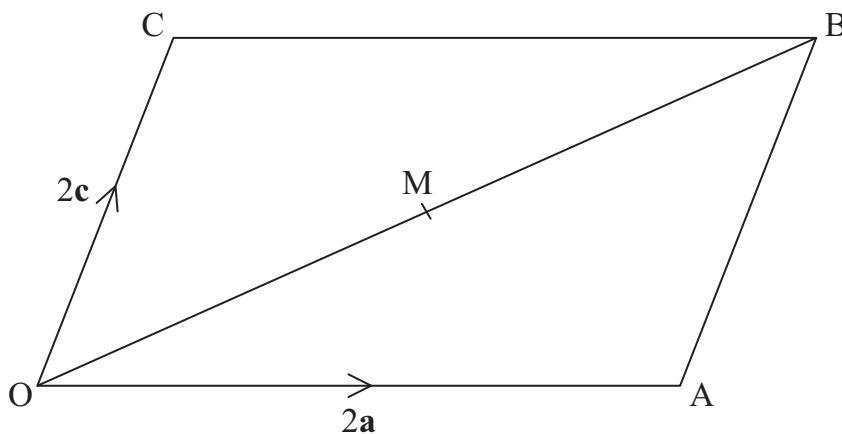
15 A bag contains 5 red grapes and 7 green grapes.
Florence and Ann each choose a grape at random from this bag.

(a) What is the probability that they choose the same colour?

Examiner Only

Marks	Remark

Answer _____ [3]


(b) What is the probability that they choose different colours?

Answer _____ [1]

Total Question 15

16

Examiner Only

Marks

Remark

OABC is a parallelogram.

M is the mid-point of the diagonal OB.

$\overrightarrow{OA} = 2\mathbf{a}$ and $\overrightarrow{OC} = 2\mathbf{c}$.

(a) Express \overrightarrow{OM} in terms of \mathbf{a} and \mathbf{c} .

Answer $\overrightarrow{OM} =$ _____ [1]

(b) Use vectors to prove that M is also the mid-point of AC.

[3]

Total Question 16

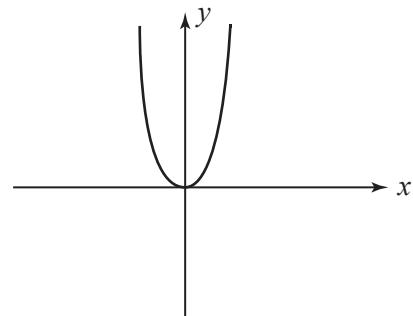
6395.07R

1 4

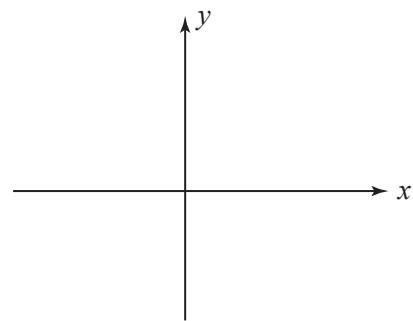
17 Expand $(7 - \sqrt{3})^2$ giving your answer in the form $a + b\sqrt{3}$

Examiner Only	
Marks	Remark
Total Question 17	

Answer _____ [2]

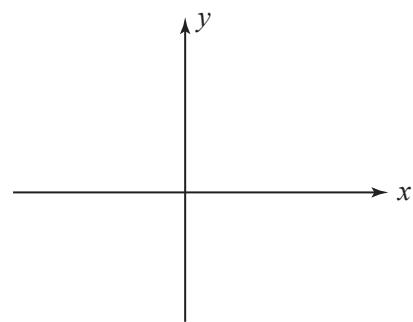

6395.07R

[Turn over



18 The diagram shows the graph of $y = f(x)$

Examiner Only



(a) Sketch the graph of $y = f(x) - 1$ on the axes below.

[1]

(b) Sketch the graph of $y = f(x + 1)$ on the axes below.

[1]

THIS IS THE END OF THE QUESTION PAPER

Total Question 18

6395.07R

1 6

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

111336

