



General Certificate of Secondary Education  
2011

---

## Mathematics

Unit T4  
Higher Tier

[GMT41]

TUESDAY 31 MAY  
9.15 am–11.15 am

---

MARK  
SCHEME

## GCSE MATHEMATICS 2011

**Introduction**

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The solution to a question gains marks for correct method and marks for accurate working based on this method. The marks awarded for each question are shown in the right hand column and they are prefixed by the letters **M**, **A** and **MA** as appropriate. The key to the mark scheme is given below:

- M** indicates marks for correct method.
- A** indicates marks for accurate working, whether in calculation, reading from tables, graphs or answers. Accuracy marks may depend on preceding **M** (method) marks, hence **M0 A1** cannot be awarded i.e. where the method is not correct no marks can be given.
- MA** indicates marks for combined method and accurate working.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be **followed through** from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

**Positive marking:**

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of **following through** their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:

- (a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
- (b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier, only a proportion of the marks will be available (based on the professional judgement of the examiner).

## General Marking Advice

- (i) If the correct answer is seen in the body of the script and the answer given in the answer line is clearly a transcription error, full marks should be awarded.
- (ii) If the answer is missing, but the correct answer is seen in the body of the script, full marks should be awarded.
- (iii) If the correct answer is seen in working but a completely different answer is seen in the answer space, then some marks will be awarded depending on the severity of the error.
- (iv) Work crossed out but not replaced should be marked.
- (v) In general, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered (with no solution offered on the answer line), mark the poorest answer.
- (vi) For methods not provided for in the mark scheme, give as far as possible equivalent marks for equivalent work.
- (vii) Where a follow through mark is indicated on the mark scheme for a particular part question, the marker must ensure that you refer back to the answer of the previous part of the question.
- (viii) Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures seen. E.g. the answer in the mark scheme is 4.65 and the candidate then correctly rounds to 4.7 or 5 on the answer line. Allow full marks for 4.65 seen in the working.
- (ix) Anything in the mark scheme which is in brackets (...) is not required for the mark to be earned, but if present it must be correct.
- (x) For any question, the range of answers given in the mark scheme is inclusive.

## Quality of written communication

In GCSE Mathematics, particular questions are identified where candidates must demonstrate the quality of their written communication.

In particular, candidates must:

- (i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear (i.e. comprehension and meaning is clear by using the correct notation and labelling conventions);
- (ii) select and use a form and style of writing appropriate to their purpose and to complex subject matter (i.e. reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning);

and

(iii) organise information clearly and coherently, using specialist vocabulary where appropriate (i.e. the mathematical methods and processes used are coherently and clearly organised and appropriate mathematical vocabulary used).

This assessment may be through, for example, an explanation of the geometrical properties of a given shape or, for example, through concise mathematical argument in a multi-step problem.

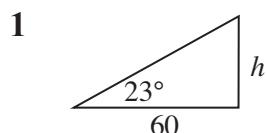



diagram A1

AVAILABLE MARKS

$$\tan 23^\circ = \frac{h}{60} \quad \text{MA1}$$

$$h = 60 \tan 23^\circ \quad \text{MA1}$$

$$= 25 (.468) \quad \text{A1}$$

4

2 (a)  $2(2x - 4) + 5(x + 11) = 20$  MA1  
 $4x - 8 + 5x + 55 = 20$  MA1  
 $9x + 47 = 20$  MA1  
 $9x = -27$   
 $x = -3$  MA1

(b) grad = -2  $y = -2x + 6$  MA1, A1, A1

7

3 suitable comments e.g.  
median and/or quartiles higher for class Q  
range or IQR or spread is greater for class P

A1

A1

2

4 103.5  
112.5

A1

A1

2

5 (a) (i) 41  
(ii) 66  
(iii) 115

(b)  $\text{ADC} + x = 180$  reason  
 $y + \text{ADC} = 180$  reason  
so  $x = y$

A1

A1

A1

A1

A1

A1

6

6  $88\% = \text{£}63.36$  MA1  
 $= \frac{63.36}{0.88} \quad \text{OR} \quad \frac{63.36}{88} \times 100$  MA1  
 $= 72$  A1

3

|                                                                                                                                                                                                                                                                                          |  | MA1                      | AVAILABLE MARKS |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------|-----------------|
| 7 (a) (i) 80                                                                                                                                                                                                                                                                             |  |                          |                 |
| (ii) $200 - 186$<br>14                                                                                                                                                                                                                                                                   |  | MA1<br>A1                |                 |
| (b) median at 80<br>quartiles at 60 and 110<br>range                                                                                                                                                                                                                                     |  | A1<br>A1<br>A1           | 6               |
| 8 (a) $3a(3a - y)$<br>$3(3a^2 - ay)$ or $a(9a - 3y)$ allow A1                                                                                                                                                                                                                            |  | A2                       |                 |
| (b) (i) $(x + 3)(x - 2)$                                                                                                                                                                                                                                                                 |  | A2                       |                 |
| (ii) -3 and 2                                                                                                                                                                                                                                                                            |  | A1                       |                 |
| (c) $4x + 3y = 1$ OR $4x + 3y = 1$<br>$4x - 2y = -4$ OR $4x - 3y = -6$<br>$y = 1$ OR $x = -\frac{1}{2}$<br>$x = -\frac{1}{2}$ OR $y = 1$                                                                                                                                                 |  | MA1<br>MA1<br>MA1<br>MA1 | 8               |
| 9 0.8, 0.64, 0.512, 0.4096<br>Ans 4                                                                                                                                                                                                                                                      |  | M1, A1<br>A1             | 3               |
| 10 (a) $x^2 + (x - 6)^2 = 26$<br>$x^2 + x^2 - 12x + 36 = 26$<br>$2x^2 - 12x + 10 = 0$<br>$(\div 2) x^2 - 6x + 5 = 0$                                                                                                                                                                     |  | MA1<br>MA1<br>MA1        |                 |
| (b) $(x - 5)(x - 1) = 0$<br>$x = 5, x = 1$<br>$(5, -1)$ and $(1, -5)$                                                                                                                                                                                                                    |  | MA1<br>MA1<br>MA1        | 6               |
| 11 (a) suitable explanation e.g. workers with names at the end of the alphabet<br>have no chance of being in the sample<br>e.g. some of the groups in the table may not be fairly represented<br>it is not a random sample<br>all workers do not have an equal chance of being in sample |  | A2<br>A1<br>A1<br>A1     |                 |
|                                                                                                                                                                                                                                                                                          |  | (QWC)                    |                 |
| (b) explanation<br>using $\frac{80}{600}$ ; of each category                                                                                                                                                                                                                             |  | A2<br>(QWC)              | 4               |

|                                                                   |        | AVAILABLE MARKS |
|-------------------------------------------------------------------|--------|-----------------|
| 12 (a) $y = \frac{k}{x^2}$                                        |        |                 |
| $10 = \frac{k}{4}$                                                | M1, A1 |                 |
| $y = \frac{40}{x^2}$                                              | A1     |                 |
| (b) $y = \frac{40}{25}$ or 1.6                                    | A1     | 4               |
| 13 $\frac{12}{\sin 95} = \frac{AX}{\sin 35} = \frac{AY}{\sin 50}$ | MA1    |                 |
| $AX = \frac{12 \sin 35}{\sin 95}$                                 | MA1    |                 |
| $= 6.9 \text{ km}$                                                | MA1    |                 |
| $AY = \frac{12 \sin 50}{\sin 95}$                                 |        |                 |
| $= 9.2 \text{ km}$                                                |        |                 |
| Answer 2.3                                                        | A1     | 4               |
| 14 (a) $x(x + 3y) - 5(x + 3y)$                                    | MA1    |                 |
| $\frac{(x - 5)(x + 3y)}{2x(x - 5)}$                               | MA1    |                 |
| $\frac{x + 3y}{2x}$                                               | A1     |                 |
| (b) $\frac{x + 3y}{2x} = 0 \rightarrow x + 3y = 0$                |        |                 |
| choose -ve $x$ and corresponding $y$                              |        |                 |
| e.g. -3, 1                                                        |        |                 |
| -6, 2 etc.                                                        | M1, A1 | 6               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | AVAILABLE MARKS |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|------------|--|---|------|-----|------------|----|------|-----|----------|----|------|--------|--|----|------|--------|--|---|----|-----|--|--------------------------------------------------------------|--|--|--|------|--|--|--|--------------|--|--|----|----|
| 15 (a) 1.6, 5.6, 7.2, 0.9, 0.4<br>graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1, A1<br>A1 |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| (b) $36 \times \frac{20}{80}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1           |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1           |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| (c) (i) weights of second group are on average higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1           |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| (ii) weights of first group are more spread out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1           |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| (d) suitable reason e.g.<br>first group could be girls and second group boys or<br>second group could be older children                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1           |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| (e) <table style="border-collapse: collapse; width: 100%;"> <tr> <td style="text-align: right; padding-right: 10px;"><math>f</math></td> <td style="text-align: right; padding-right: 10px;"><math>x</math></td> <td style="text-align: right; padding-right: 10px;"><math>fx</math></td> <td></td> </tr> <tr> <td style="text-align: right; padding-right: 10px;">8</td> <td style="text-align: right; padding-right: 10px;">32.5</td> <td style="text-align: right; padding-right: 10px;">260</td> <td style="text-align: right; padding-right: 10px;"><math>f</math> M1, A1</td> </tr> <tr> <td style="text-align: right; padding-right: 10px;">18</td> <td style="text-align: right; padding-right: 10px;">37.5</td> <td style="text-align: right; padding-right: 10px;">675</td> <td style="text-align: right; padding-right: 10px;"><math>fx</math> MA1</td> </tr> <tr> <td style="text-align: right; padding-right: 10px;">37</td> <td style="text-align: right; padding-right: 10px;">42.5</td> <td style="text-align: right; padding-right: 10px;">1572.5</td> <td></td> </tr> <tr> <td style="text-align: right; padding-right: 10px;">29</td> <td style="text-align: right; padding-right: 10px;">47.5</td> <td style="text-align: right; padding-right: 10px;">1377.5</td> <td></td> </tr> <tr> <td style="text-align: right; padding-right: 10px;">8</td> <td style="text-align: right; padding-right: 10px;">55</td> <td style="text-align: right; padding-right: 10px;">440</td> <td></td> </tr> <tr> <td colspan="3" style="text-align: right; padding-right: 10px;"><hr style="border: 0.5px solid black; margin-bottom: 5px;"/></td><td></td></tr> <tr> <td colspan="3" style="text-align: right; padding-right: 10px;">4325</td><td></td></tr> <tr> <td colspan="3" style="text-align: right; padding-right: 10px;">mean = 43.25</td><td>A1</td></tr> </table> | $f$          | $x$             | $fx$       |  | 8 | 32.5 | 260 | $f$ M1, A1 | 18 | 37.5 | 675 | $fx$ MA1 | 37 | 42.5 | 1572.5 |  | 29 | 47.5 | 1377.5 |  | 8 | 55 | 440 |  | <hr style="border: 0.5px solid black; margin-bottom: 5px;"/> |  |  |  | 4325 |  |  |  | mean = 43.25 |  |  | A1 | 12 |
| $f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $x$          | $fx$            |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.5         | 260             | $f$ M1, A1 |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.5         | 675             | $fx$ MA1   |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.5         | 1572.5          |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.5         | 1377.5          |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55           | 440             |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| <hr style="border: 0.5px solid black; margin-bottom: 5px;"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 4325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| mean = 43.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 | A1         |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 16 (a) 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1           |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| (b) (i) $-2n$<br>allow 1 for $2n$ or $-n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1, A1       |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| (ii) $-2n - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A2           | 5               |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| 17 $10(x + 2) + 7(2x - 5) = 3(2x - 5)(x + 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1           |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| $10x + 20 + 14x - 35 = 3(2x^2 - 5x + 4x - 10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MA1          |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| $24x - 15 = 6x^2 - 3x - 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MA1          |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| $6x^2 - 27x - 15 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MA1          |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| $3(2x^2 - 9x - 5) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MA1          |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| $(2x + 1)(x - 5) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MA1          |                 |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |
| $x = -\frac{1}{2}$ or 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MA1          | 6               |            |  |   |      |     |            |    |      |     |          |    |      |        |  |    |      |        |  |   |    |     |  |                                                              |  |  |  |      |  |  |  |              |  |  |    |    |

18 angle ABD recognised

MA1

AVAILABLE MARKS

$$\frac{1}{2}BD = \frac{1}{2}\sqrt{5^2 + 5^2} = 3.5355$$

MA1

$$\cos^{-1} \frac{3.5355}{6}$$

MA1

$$\text{angle} = 53.9$$

A1

4

19 Area  $ABC = \frac{1}{2} \times 6.2 \times AC \times \sin 35^\circ$ 

M1

$$9.2 = \frac{1}{2} \times 6.2 \times AC \times (0.57357)$$

A1

$$AC = 5.1741$$

A1

cos rule for angle in  $ACD$  or cos rule for angle  $ADC$ 

M1

$$\text{e.g. } \cos CAD = \frac{AC^2 + AD^2 - CD^2}{2 \times AC \times AD}$$

$$= \frac{5.1741^2 + 10.5^2 - 6.4^2}{2 \times 5.1741 \times 10.5}$$

$$= 0.884$$

A1

$$\text{angle } CAD = 27.86^\circ \quad \text{angle } ADC = 22.1969^\circ$$

A1

$$\text{Area } ACD = \frac{1}{2} \times 5.1741 \times 10.5 \times \sin 27.86^\circ$$

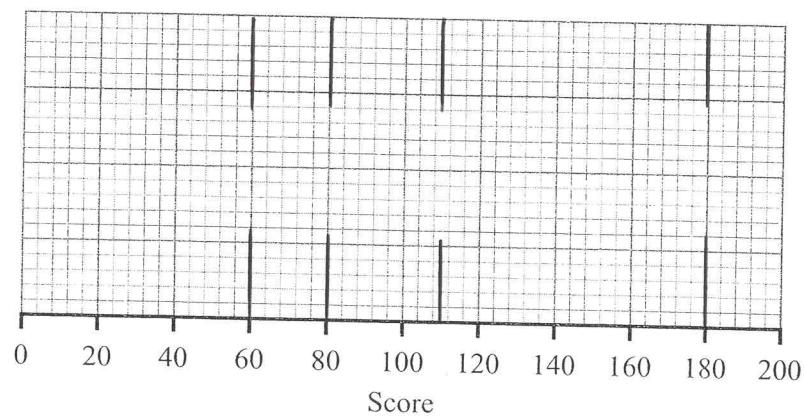
M1

$$= 12.69$$

A1

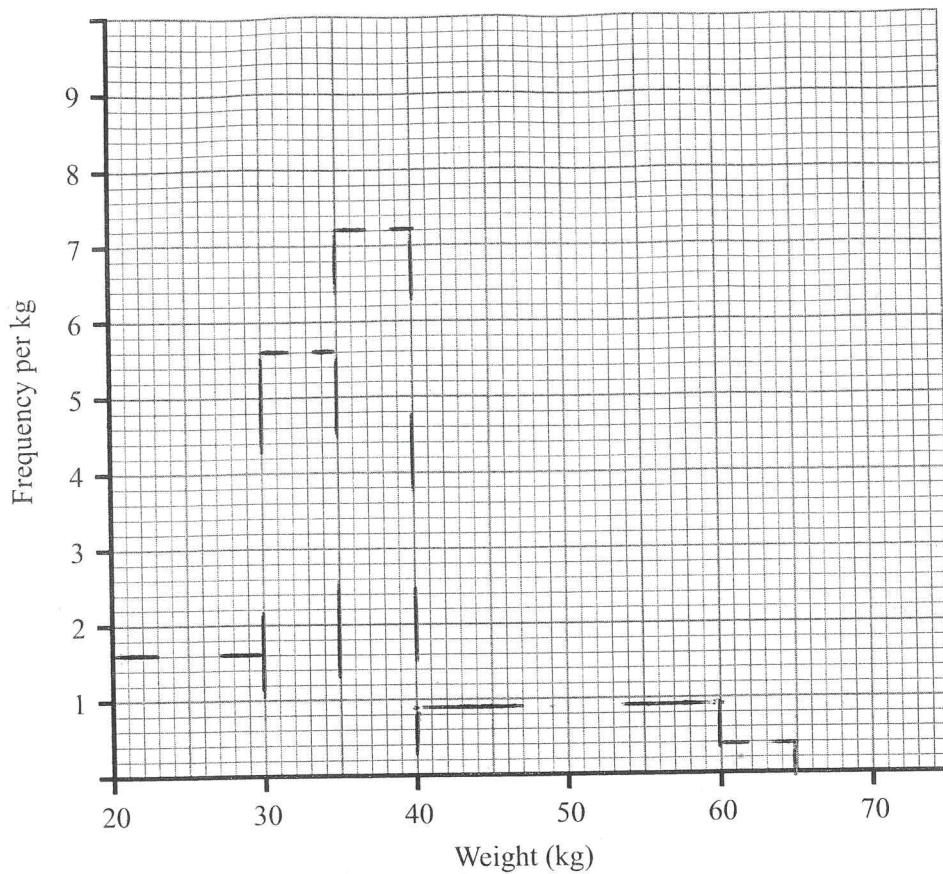
$$\text{Area } ACD = \frac{1}{2} \times 10.5 \times 6.4 \times \sin 22.1969^\circ$$

A1


$$= 12.69$$

8

Total


100

GCSE NEW SPEC MATHEMATICS SUMMER 2011  
UNIT T4  
OVERLAYS QUESTION 7B



GCSE NEW SPEC MATHEMATICS SUMMER 2011  
UNIT T4  
OVERLAYS QUESTION 15A

A

