



Rewarding Learning

General Certificate of Secondary Education  
2014–2015

Centre Number

|  |  |  |  |  |
|--|--|--|--|--|
|  |  |  |  |  |
|--|--|--|--|--|

Candidate Number

|  |  |  |  |
|--|--|--|--|
|  |  |  |  |
|--|--|--|--|

# Double Award Science: Chemistry

Unit C1  
Higher Tier



[GSD22]

**WEDNESDAY 25 FEBRUARY 2015, MORNING**

**TIME**

1 hour.

**INSTRUCTIONS TO CANDIDATES**

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper.  
Answer **all eight** questions.

| For Examiner's use only |       |
|-------------------------|-------|
| Question Number         | Marks |
| 1                       |       |
| 2                       |       |
| 3                       |       |
| 4                       |       |
| 5                       |       |
| 6                       |       |
| 7                       |       |
| 8                       |       |

**INFORMATION FOR CANDIDATES**

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 3.  
A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

| Total Marks |  |
|-------------|--|
|-------------|--|

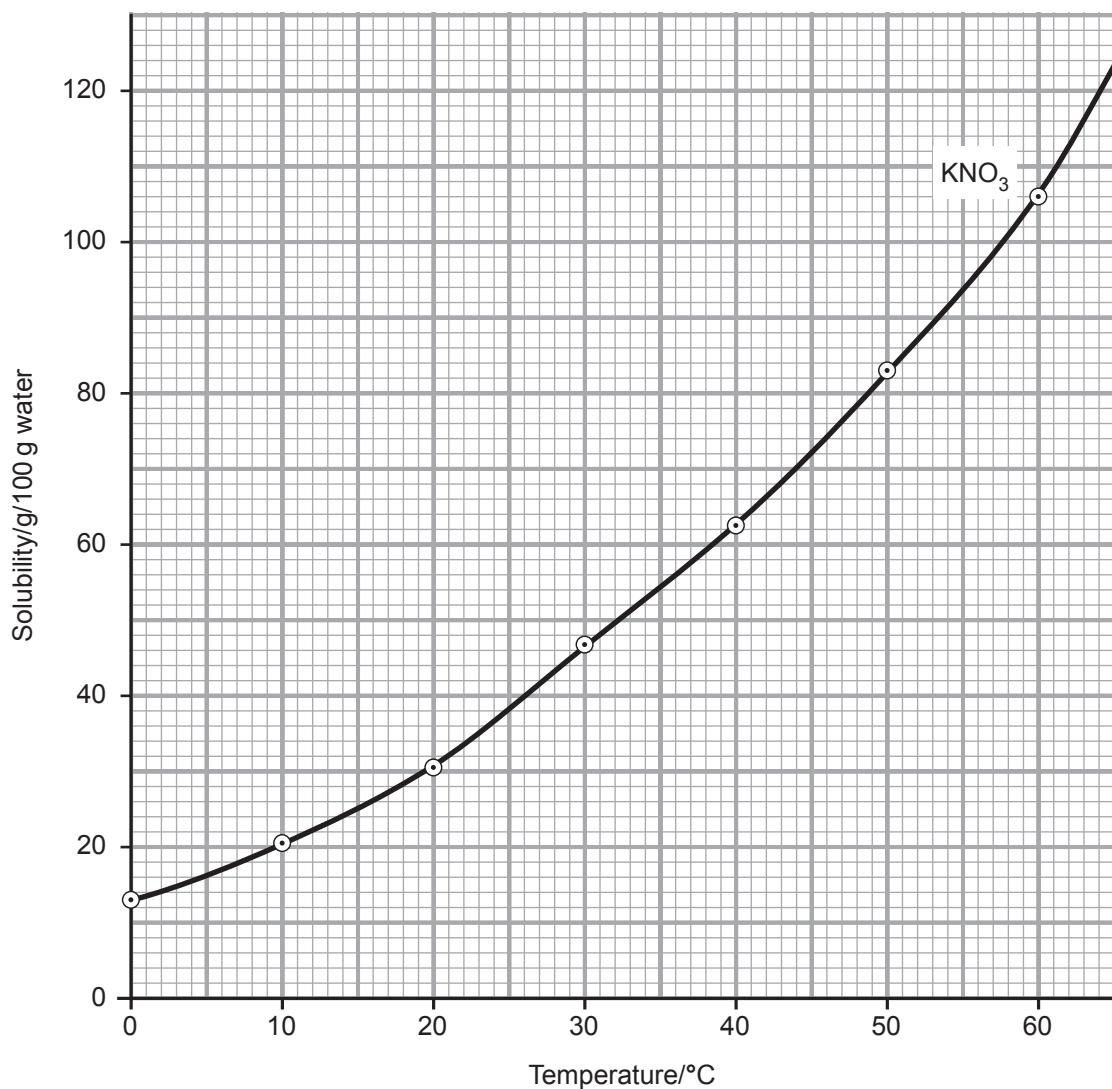
**BLANK PAGE**

1 This question is about atomic structure.

(a) Use your knowledge of atomic structure to complete the table below.

| Atom/ion | Mass number | Number of protons | Number of electrons | Number of neutrons |
|----------|-------------|-------------------|---------------------|--------------------|
| A        |             | 3                 | 3                   | 3                  |
| B        | 27          | 13                | 13                  |                    |
| C        | 11          |                   | 5                   | 6                  |
| D        |             | 11                | 10                  | 12                 |
| E        |             | 17                | 18                  | 18                 |

[5]


(b) Give the chemical symbol for each of the particles A, D and E.  
They may be atoms or ions.

|   | Symbol |
|---|--------|
| A |        |
| D |        |
| E |        |

[3]

| Examiner Only |        |
|---------------|--------|
| Marks         | Remark |
|               |        |

2 The graph below shows the solubility curve for potassium nitrate,  $\text{KNO}_3$ .



(a) Use the data given in the table below to plot a solubility curve for potassium chloride,  $\text{KCl}$ , on the same grid as the solubility curve for potassium nitrate.

| Temperature/°C                                 | 0  | 10 | 20 | 30 | 40 | 50 | 60 |
|------------------------------------------------|----|----|----|----|----|----|----|
| Solubility of potassium chloride/g/100 g water | 28 | 31 | 33 | 36 | 39 | 42 | 45 |

[3]

| Examiner Only |        |
|---------------|--------|
| Marks         | Remark |
|               |        |

(b) Describe and compare the trends in solubility for potassium nitrate and potassium chloride.

---



---



---



---

[2]

(c) At what temperature do both salts have the same solubility?

---

[1]

(d) (i) What is the solubility of potassium nitrate in 100 g of water at 43 °C?

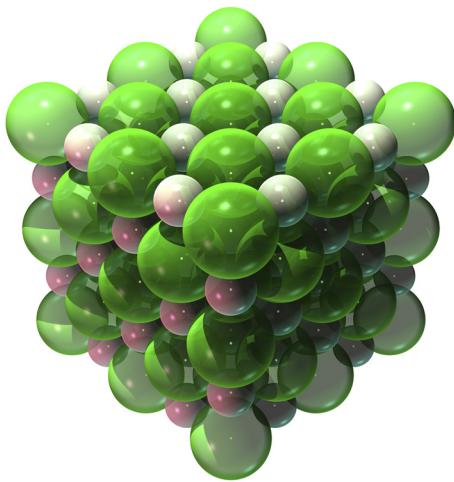
---

[1]

(ii) Calculate the difference in solubility between potassium nitrate and potassium chloride in 100 g of water at 43 °C.

---

[2]


(e) Calculate the amount that would crystallise out if a saturated solution of potassium nitrate in 100 g of water was cooled from 56 °C to 25 °C.

---

[3]

| Examiner Only |        |
|---------------|--------|
| Marks         | Remark |
|               |        |

3 Sodium chloride has an ionic crystal lattice structure like that shown in the diagram below.



© Russell Kightley / Science Photo Library

**In this question you will be assessed on your written communication skills including the use of specialist scientific terms.**

Predict and explain the physical properties you would expect sodium chloride to have.

| <b>Examiner Only</b> |               |
|----------------------|---------------|
| <b>Marks</b>         | <b>Remark</b> |
|                      |               |

4 The table below gives information about the salts formed when metal carbonates react with acids.

| Examiner Only |        |  |  |  |
|---------------|--------|--|--|--|
| Marks         | Remark |  |  |  |

| Metal carbonate | Acid used    | Cation in salt   | Anion in salt      | Formula of salt produced   |
|-----------------|--------------|------------------|--------------------|----------------------------|
| calcium         | hydrochloric | $\text{Ca}^{2+}$ |                    | $\text{CaCl}_2$            |
| sodium          |              | $\text{Na}^+$    | $\text{SO}_4^{2-}$ |                            |
|                 | sulfuric     | $\text{Cu}^{2+}$ |                    | $\text{CuSO}_4$            |
| magnesium       | nitric       |                  |                    | $\text{Mg}(\text{NO}_3)_2$ |

(a) Complete the table. [4]

(b) One of the reactions shown in the table involves a colour change. Give the **colours** of the starting metal carbonate and the salt solution produced:

metal carbonate colour: \_\_\_\_\_

colour of salt solution produced: \_\_\_\_\_ [2]

(c) All of the reactions shown in the table produce the same gas. Name this gas and describe a test that is used to identify it.

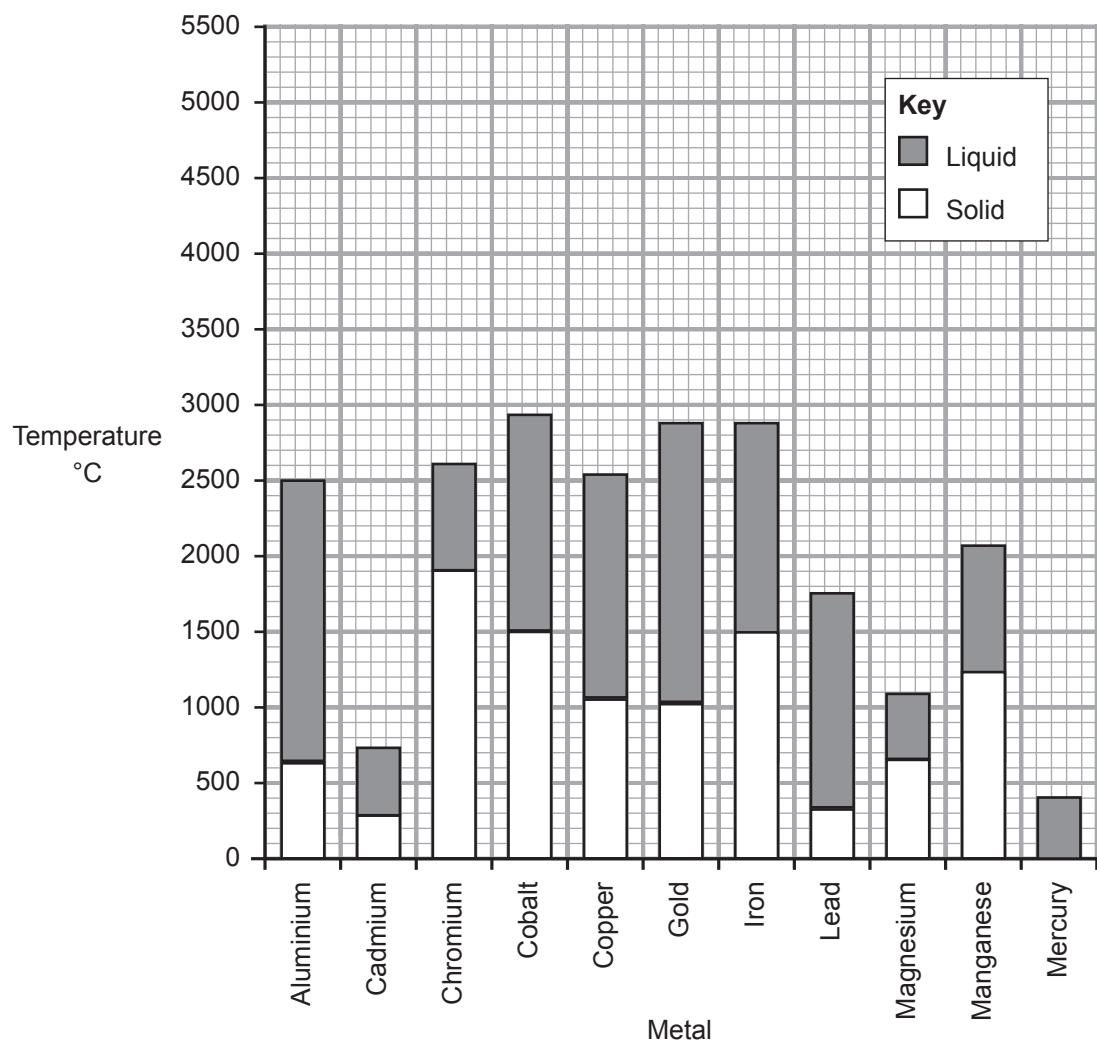
Name: \_\_\_\_\_

Test: \_\_\_\_\_

\_\_\_\_\_

[3]

5 (a) What is meant by the term **melting point**?


Melting point is: \_\_\_\_\_  
\_\_\_\_\_ [1]

Examiner Only

Marks

Remark

(b) The data shown below gives information about the melting and boiling points of some metals.



(i) Which metal, in the table, has the lowest boiling point?

\_\_\_\_\_ [1]

(ii) Which metal, in the table, has the highest melting point?

\_\_\_\_\_ [1]

(iii) From the data in the table, in what way are gold and aluminium very similar?

\_\_\_\_\_ [1]

(c) The following table gives information about the relative ductility and malleability of some metals.

| Most ductile  | Ductility | Malleability | Most malleable  |
|---------------|-----------|--------------|-----------------|
|               | gold      | gold         |                 |
|               | iron      | aluminium    |                 |
|               | copper    | copper       |                 |
|               | aluminium | tin          |                 |
|               | zinc      | lead         |                 |
|               | tin       | zinc         |                 |
| Least ductile | lead      | iron         | Least malleable |

Describe similarities and differences you can notice in the relative ductility and malleability of these seven metals.

---



---



---



---



---

[3]

(d) Explain, in terms of their electrons and positive ions, how the structure of all metals allows them to be both malleable and ductile.

---



---



---



---



---

[4]

| Examiner Only |        |
|---------------|--------|
| Marks         | Remark |
|               |        |

6 (a) What do you understand by the term **covalent bond**?

---



---

[1]

Examiner Only

Marks

Remark

(b) (i) Draw a dot and cross diagram to show the bonding in a molecule of carbon dioxide,  $\text{CO}_2$ . Show outer electrons only.

[3]

(ii) Draw a dot and cross diagram to show the bonding in a molecule of ammonia,  $\text{NH}_3$ . Show outer electrons only.

[2]

(iii) On your diagram of the molecule of ammonia above label a lone pair of electrons.

[1]

7 The table below gives information about four members of the halogens.

| element  | ion    | physical state at room temperature | colour        | formula of molecule | toxicity |
|----------|--------|------------------------------------|---------------|---------------------|----------|
| fluorine | $F^-$  | gas                                | yellow        | $F_2$               | high     |
| chlorine | $Cl^-$ | gas                                | green         | $Cl_2$              | high     |
| bromine  | $Br^-$ | liquid                             | reddish-brown | $Br_2$              | high     |
| iodine   | $I^-$  | solid                              | grey-black    | $I_2$               | high     |

(a) Describe the trends in physical state at room temperature and colour as you move down the group of halogens.

---



---

[2]

(b) Explain why all the halogens form ions with a charge of minus one.

---



---

[2]

(c) Astatine, At, is the fifth member of the halogens.

(i) Using the data given predict the following properties of astatine.

Physical state at room temperature: \_\_\_\_\_

Colour: \_\_\_\_\_

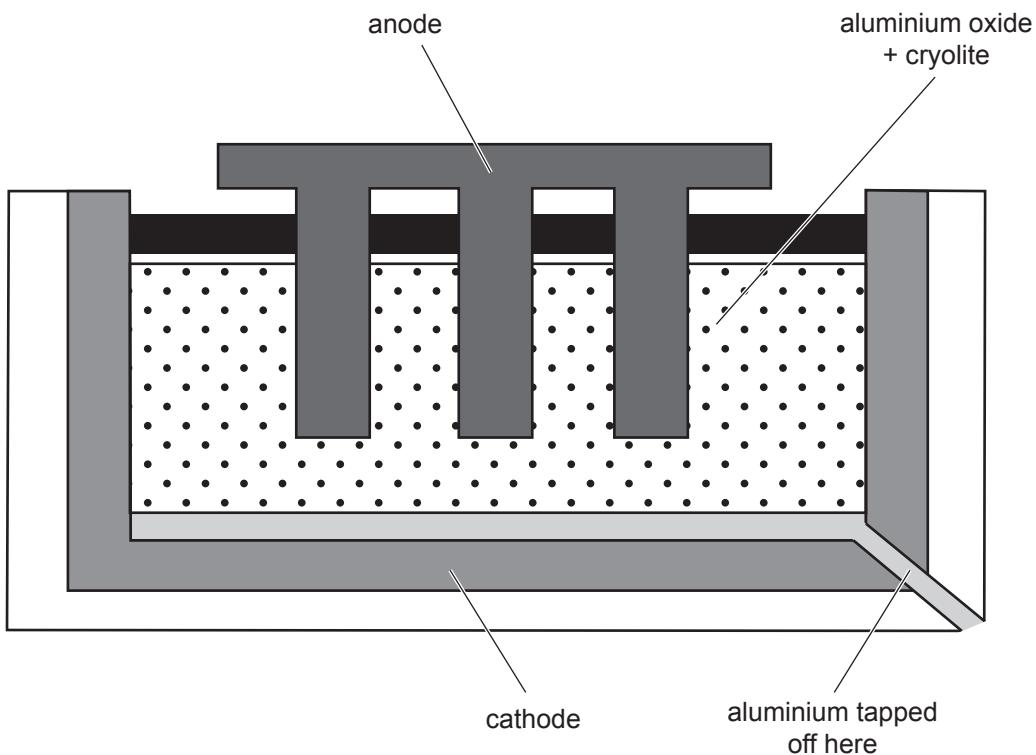
Toxicity: \_\_\_\_\_

Formula of ion: \_\_\_\_\_

Formula of molecule: \_\_\_\_\_

[2]

(ii) What would you predict to be the name of the compound formed when sodium reacts with astatine?


---

[1]

| Examiner Only |        |
|---------------|--------|
| Marks         | Remark |
|               |        |

8 The diagram below shows how aluminium is extracted from its ore.

| Examiner Only |        |
|---------------|--------|
| Marks         | Remark |
|               |        |



(a) What is the name of the aluminium ore used in this extraction process?

\_\_\_\_\_ [1]

(b) Write a half equation to show what happens at the cathode.

\_\_\_\_\_ [2]

(c) Explain why the anodes need to be replaced periodically during this process.

\_\_\_\_\_  
\_\_\_\_\_  
\_\_\_\_\_ [3]

(d) The extraction process of aluminium is very expensive.  
Give **two** ways in which cryolite helps reduce costs.

1. \_\_\_\_\_  
\_\_\_\_\_

2. \_\_\_\_\_  
\_\_\_\_\_ [2]

(e) State **two** factors which should be taken into account when siting an aluminium extraction plant.

1. \_\_\_\_\_  
2. \_\_\_\_\_ [2]

| Examiner Only |        |
|---------------|--------|
| Marks         | Remark |
|               |        |

---

**THIS IS THE END OF THE QUESTION PAPER**

---





Permission to reproduce all copyright material has been applied for.  
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA  
will be happy to rectify any omissions of acknowledgement in future if notified.