

Centre Number

71

Candidate Number

General Certificate of Secondary Education
2013–2014

Double Award Science: Chemistry

Unit C1

Foundation Tier

[GSD21]

THURSDAY 15 MAY 2014, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all ten** questions.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 5. A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

Total Marks

1 A list of substances and their uses is given below.
Draw a line from each substance to the correct use.

Examiner Only	
Marks	Remark

Substance**Use**anhydrous
copper sulfate

chemical test for water

magnesium

test for an alkali

blue litmus paper

test for an acid

copper

high strength alloys
for aircraft

diamond

electrical wiring

[5]

2 Iodine is a solid at room temperature. It changes to a gas when heated.

(a) What is the name given to the change of state from solid to gas?

_____ [1]

Examiner Only	
Marks	Remark

(b) Complete the table below by choosing **one** other property of solid iodine and **one** other property of iodine gas.

Place a tick (✓) in both of the correct places in the table.

Property	Iodine	
	Solid	Gas
has a fixed shape	✓	
takes the shape of the bottom of the container		
takes the volume and shape of the container		
can be compressed easily		✓
cannot be compressed easily		

[2]

(c) Name the Group in the Periodic Table where iodine is placed.

_____ [1]

3 Hydrated copper(II) sulfate is added to a beaker of water and stirred until some solid copper(II) sulfate remains at the bottom of the beaker.

(a) What colour is hydrated copper(II) sulfate?

_____ [1]

(b) Explain what is meant by the term **hydrated**.

_____ [1]

(c) Draw a labelled diagram with assembled apparatus to show how the solid copper(II) sulfate, which is left at the bottom of the beaker, is separated from the solution.

[4]

4 When electricity is passed through water containing some acid, the water decomposes (breaks down) to form the gases hydrogen and oxygen.

(a) What is the name given to the process of decomposing a compound using electricity?

_____ [1]

(b) **Balance** the equation below which describes the decomposition of water.

[1]

(c) Describe a test for hydrogen gas.

_____ [2]

(d) (i) Hydrogen is a **flammable** gas. Which hazard symbol shown below should be placed on a cylinder of hydrogen gas?
Circle the correct hazard symbol.

© Crown Copyright

[1]

(ii) Give two reasons why hazard symbols are important.

1. _____

2. _____

[2]

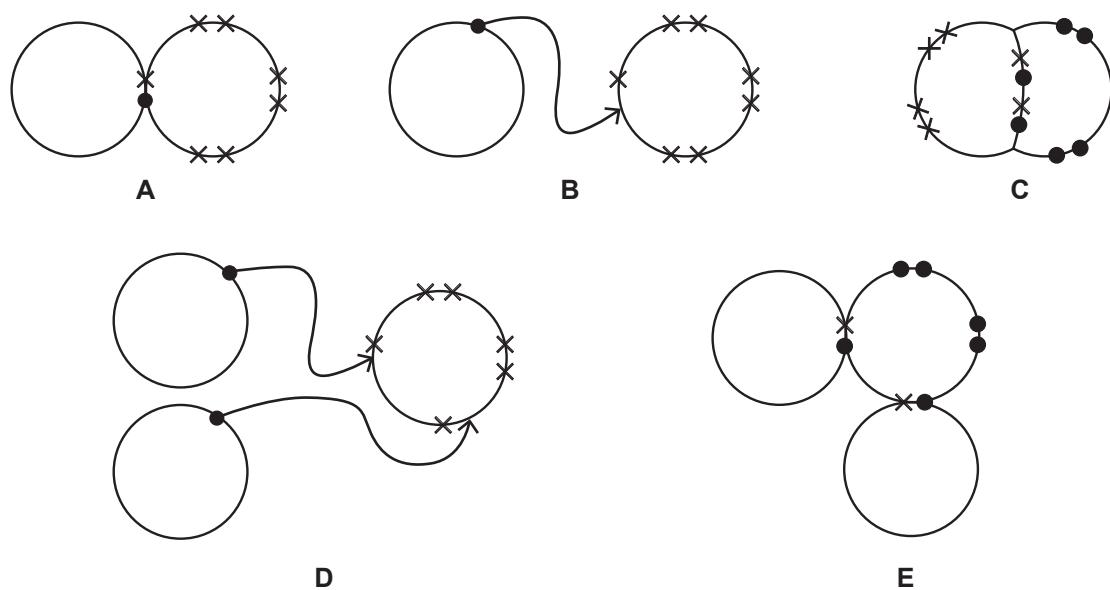
Examiner Only	
Marks	Remark

5 Describe **in words** the structure of an atom of boron whose atomic number is 5.

You may find your Data Leaflet helpful.

Your answer should include the number and position of all of the different types of particles in a boron atom.

You will be assessed on your written communication skills including the use of specialist science terms.



[6]

Examiner Only	
Marks	Remark

6 Five bonding diagrams, A–E, are drawn below. **Outer electrons are shown.**

Examiner Only	
Marks	Remark

(a) Which diagram, **A, B, C, D or E**, is a dot and cross diagram of a substance with one single covalent bond?

_____ [1]

(b) (i) Which diagram, **A, B, C, D or E**, could show the transfer of electrons between atoms of sodium and oxygen to form the ionic compound sodium oxide?

_____ [1]

(ii) Name the type of particles formed when electrons are **transferred** between atoms. Circle the correct answer in the list below.

neutrons

allotropes

ions

isotopes

[1]

(c) Which diagram, **A, B, C, D or E**, could show the covalent bonding between atoms of hydrogen and chlorine in hydrogen chloride?

_____ [1]

(d) Which diagram, **A, B, C, D or E**, could show the sharing of electrons in a molecule of oxygen?

_____ [1]

7 Potassium is a soft metal which can be cut with a knife. It reacts violently with chlorine to form potassium chloride.

(a) Complete and balance the symbol equation below for the reaction of potassium with chlorine.

[2]

(b) Describe the appearance of a piece of freshly cut potassium.

[1]

(c) What happens to the freshly cut potassium when it is left in the air for a few minutes?

[1]

(d) Why is potassium stored under oil in the laboratory?

[1]

(e) Before reacting Group 1 elements with water a risk assessment is carried out.

Give two safety precautions, apart from wearing safety glasses, which must be included in the risk assessment.

1. _____

2. _____

[2]

Examiner Only	
Marks	Remark

(f) Equal sized pieces of three Group 1 metals are added to separate troughs of water which contain universal indicator. The observations made are recorded in the table below.

Examiner Only	
Marks	Remark

Name of Group 1 metal	Observation when the metal is added to water	Colour of universal indicator
potassium	<ul style="list-style-type: none"> • catches fire • burns with a lilac flame on the surface of the water • quickly disappears 	<ul style="list-style-type: none"> • changes colour from green to blue
lithium	<ul style="list-style-type: none"> • floats • moves about the surface of the water • eventually disappears 	<ul style="list-style-type: none"> • changes colour from green to blue
sodium	<ul style="list-style-type: none"> • melts into a silvery ball on the surface of the water • disappears 	<ul style="list-style-type: none"> • changes colour from green to blue

Read the information in the table carefully.

(i) What happens to the reactivity of the Group 1 elements as the Group is descended? You may find your Data Leaflet helpful.

[1]

(ii) Explain fully why the universal indicator changed colour from green to blue.

[3]

(iii) Give one more observation which could be added to the table for **all three** reactions.

[1]

(iv) Write a **word** equation to describe the reaction between sodium and water.

[2]

8 Mendeleev was one of the scientists involved in the development of the Periodic Table.

(a) He placed elements which reacted in a similar way into Groups. Explain what is meant by the term **element**.

[1]

Complete the sentence.

(b) In his Periodic Table, Mendeleev arranged the elements in order of increasing _____ .

[1]

(c) Complete the table below which gives information about two elements in Group 5 of the Periodic Table.

Name	Symbol	Metal/Non-metal
phosphorus		
	Bi	

[2]

(d) Nitrogen is also a Group 5 element. What Period is nitrogen in?

Period _____

[1]

(e) Element X has an electronic configuration 2, 8, 7. Explain why it is **not** an element in Group 5 of the Periodic Table.

[2]

Examiner Only	
Marks	Remark

9 Magnesium chloride is produced in one type of fire extinguisher by the reaction of acid A and the base, magnesium hydroxide.

(a) Name acid A which reacts with magnesium hydroxide to produce magnesium chloride.

_____ [1]

(b) Suggest a reason why magnesium hydroxide is described as a base and not as an alkali.

_____ [1]

(c) Explain why the reaction between acid A and magnesium hydroxide is a neutralisation reaction.

_____ [1]

Magnesium chloride is also formed by the reaction of magnesium oxide and acid A.

(d) What would you expect to observe when acid A is added to magnesium oxide?

_____ [2]

Examiner Only	
Marks	Remark

(e) A solution of 0.05 mol/dm³ acid Y was tested using a pH meter and universal indicator paper. The results are recorded in the table below.

Test	Result
pH meter	pH = 3.03
Universal indicator	orange pH = 3

(i) Explain how the colour of universal indicator is used to give a pH value.

[1]

(ii) How do the results show that acid Y is a weak acid?

[1]

(iii) Give one example of a weak acid.

[1]

(iv) Which property of the acid is measured in the units mol/dm³?
Circle the correct answer.

mass

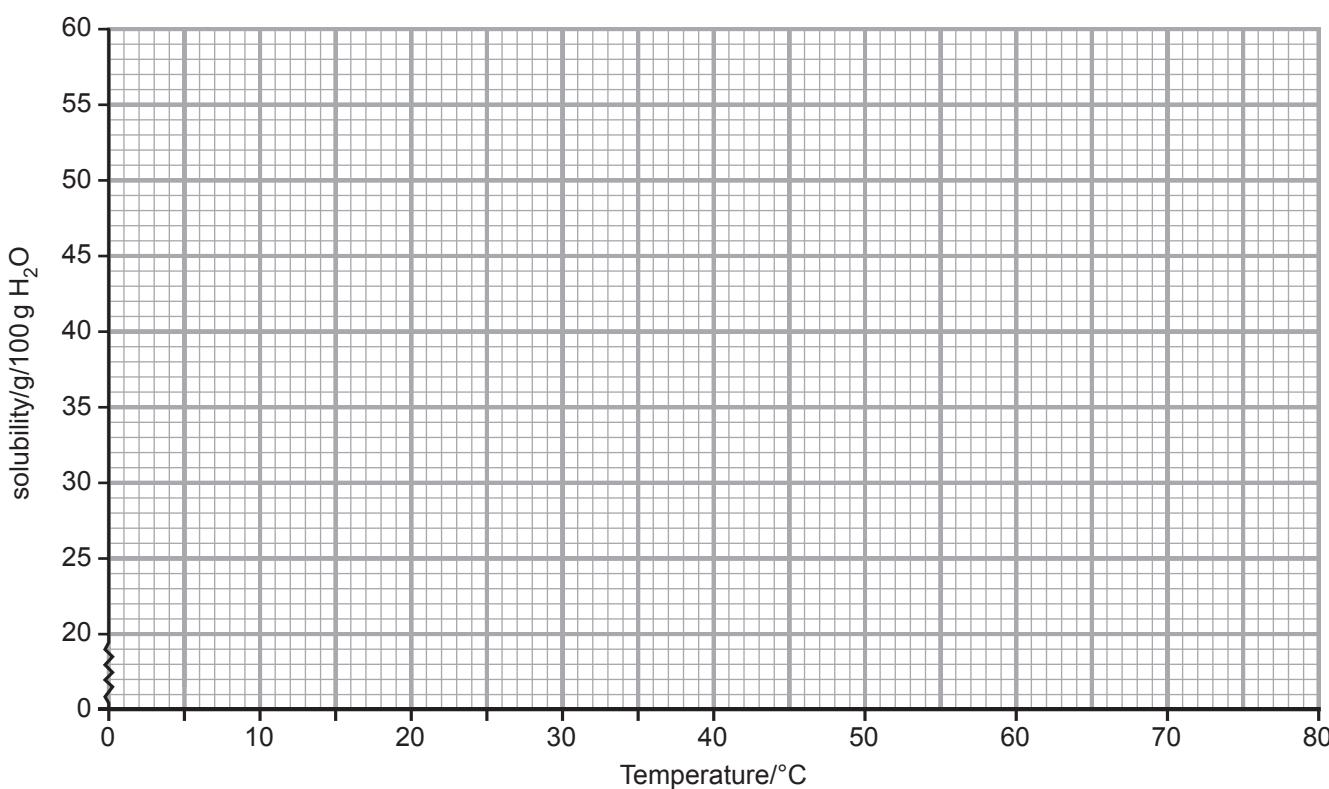
volume

concentration

strength

[1]

10 (a) An investigation was carried out to find the solubility (g/100 g H₂O) of potassium chloride at different temperatures. The results are given in the table below.


Temperature (°C)	0	10	20	30	40	50	60	80
Solubility (g/100 g H ₂ O)	27.8	30.9	34.0	37.1	40.0	42.9	45.8	51.2

(i) At 70 °C, 12.1 g of potassium chloride will saturate 25 g of water. Calculate the solubility of potassium chloride at 70 °C.
(You must show your working out.)

_____ g/100 g H₂O [1]

(ii) On the grid below draw the solubility curve for potassium chloride.

[3]

(b) The table below gives the solubility (g/100 g H₂O) at different temperatures for four **solid** compounds, A, B, C and D.

Solid	Solubility (g/100 g H ₂ O)						
	0 °C	10 °C	20 °C	30 °C	40 °C	60 °C	80 °C
A	60.0	66.7	73.9	81.8	88.7	106.0	132.0
B	12.3	16.4	18.6	25.0	31.6	40.4	49.0
C	0.22	0.24	0.25	0.26	0.26	0.24	0.23
D	79.2	85.4	94.2	105.0	119.0	158.0	187.0

(i) Use the data in the table to complete the following general rule.

For most solids the solubility _____ as the temperature _____. [1]

(ii) One of the compounds in the table does not follow this solubility rule.

Describe fully what happens to the solubility of this solid as the temperature is increased from 0 °C to 80 °C.

Examiner Only	
Marks	Remark

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.