

Rewarding Learning

General Certificate of Secondary Education
2013

Centre Number

--	--	--	--	--

Candidate Number

--	--	--	--

Technology and Design

Unit 1: Technology and Design Core

[GTD11]

ML

WEDNESDAY 15 MAY, MORNING

TIME

1 hour, plus your additional time allowance.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper.

Complete in blue or black ink only. **Do not write in pencil or with a gel pen.**

Answer **all eleven** questions.

INFORMATION FOR CANDIDATES

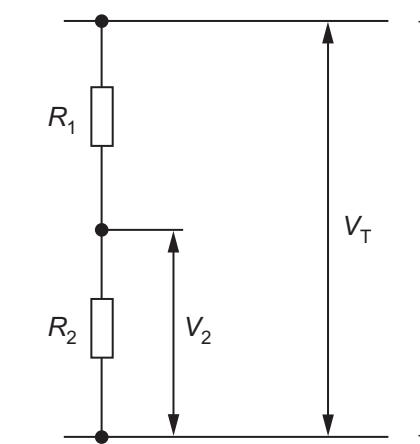
The total mark for this paper is 90.

Quality of written communication will be assessed in question 11.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

DO NOT WRITE ON THIS PAGE

8115.03 ML


Formulae for GCSE Technology and Design

You should use, where appropriate, the formulae given below when answering questions which include calculations.

1 Potential Difference = current \times resistance ($V = I \times R$)

2 For potential divider

$$V_2 = \frac{R_2}{R_1 + R_2} \times V_T$$

3 Series Resistors $R_T = R_1 + R_2 + R_3$ etc

4 Gear ratio of a simple gear train = $\frac{\text{number of teeth on driven gear}}{\text{number of teeth on driver gear}}$

1 Table 1 shows a number of different symbols. Use the first row as a guide to complete the table.

Table 1

Sketch of Symbol	Type of Symbol	Name of Symbol	Examiner Only
Marks	Remark		
	Electronic	Bulb	
	Electronic	Voltmeter	
	Mechanical		
		Use face shield	
		Potentiometer	

[9]

Total Question 1

2 Computer control systems are used to perform a range of functions.

The list below shows input and output devices that could be connected to a computer.

Choose and write down **three** input devices and **three** output devices from the list.

LIST:

Printer
Pressure Pad
Toggle Switch
CNC Machine
Keyboard
Electric Motor

input device 1 _____

input device 2 _____

input device 3 _____ [3]

output device 1 _____

output device 2 _____

output device 3 _____ [3]

Examiner Only

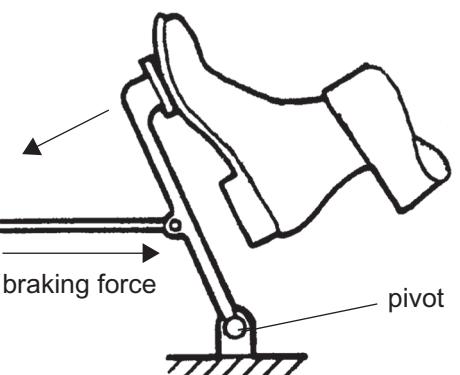
Marks

Remark

Total Question 2

3 (a) Complete **Table 2**. Write down the correct type of motion from the list below.

Table 2


Motion	Type of motion	Examiner Only
Marks	Remark	
An Electric motor		
Car windscreen wipers		
Using a hacksaw		
Pressing a push to make switch		

LIST:

- A Linear
- B Rotary
- C Reciprocating
- D Oscillating

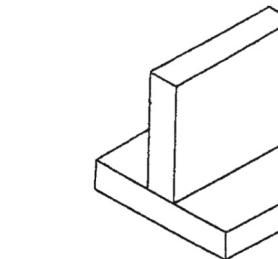
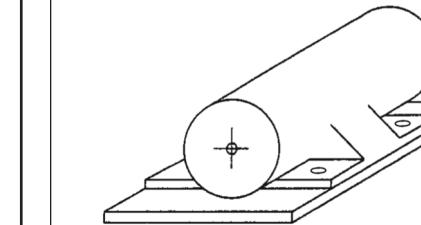
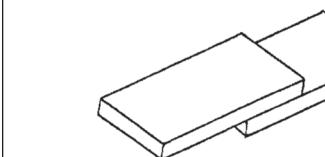
[4]

(b) **Fig. 1** shows a lever that is used to operate a foot brake.

Fig. 1

(i) What is the class of lever shown in the diagram?

[1]




(ii) How could the design in **Fig. 1** be changed to give a greater braking force?

Total Question 3

4 **Table 3** shows three examples of parts to be joined.

- (i) Complete **Table 3**. Write down an appropriate method for joining in each case.
- (ii) Show in the column if the method is permanent or semi-permanent.

Table 3

Example	Method	Permanent or Semi-permanent
 Steel plates		
 Electric Motor to a Steel Plate		
 Acrylic strips		

[6]

Total Question 4

[Turn over

8115.03 ML

5 **Table 4** lists four electronic components and the type of input needed to operate each component.

(a) Complete **Table 4**. Write down the output you would expect from each component.

Table 4

Name of Electronic Component	Input	Output	Examiner Only	
			Marks	Remark
LED	Electrical			
Motor	Electrical			
Buzzer	Electrical			
Thyristor	Electrical			

[4]

(b) Use the buzzer and thyristor listed in **Table 4** to complete the circuit shown in **Fig. 2** below.

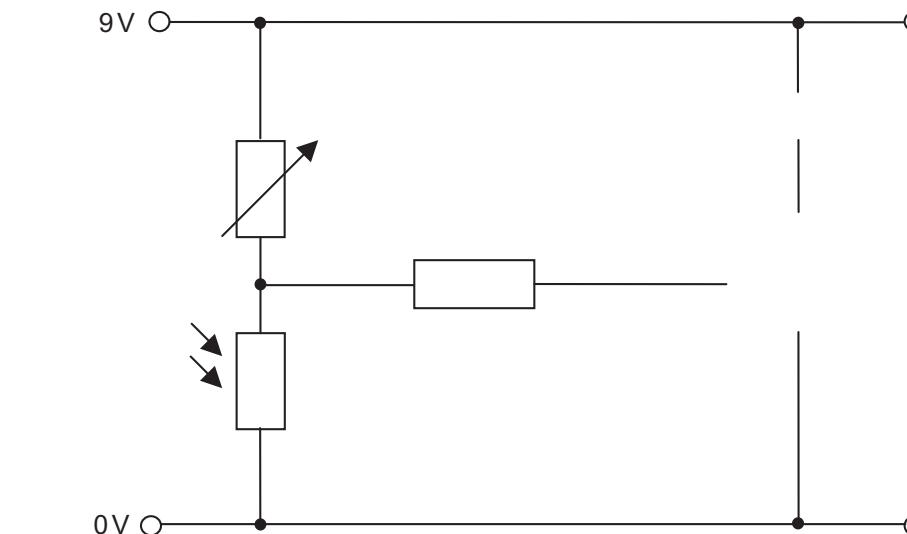


Fig. 2

(i) Complete **Fig. 2**. Put the buzzer and thyristor in the correct places on the diagram. [4]

(ii) What are **two** important functions of the thyristor in this circuit?

1. _____ [1]

2. _____ [1]

(iii) Is the buzzer activated in daytime or night-time?

_____ [1]

Examiner Only	
Marks	Remark

Total Question 5

6 Fig. 3 shows a pneumatic circuit that is used to clamp parts on a machine table. The clamps are to be applied at the same time.

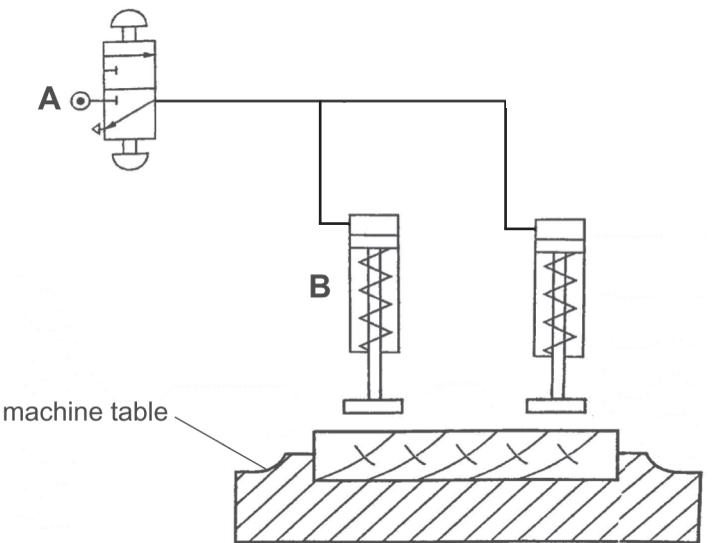


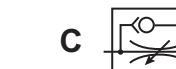
Fig. 3

(a) (i) What are the names of the components A and B?

A _____

B _____ [2]

(ii) Explain how the circuit operates.


[2]

(b) Valve C shown below is to be fitted in the circuit.

Examiner Only

Marks

Remark

(i) What is the function of valve C?

_____ [1]

(ii) Put an X in Fig. 3 to show the correct position for valve C.

Write down a reason for your answer.

_____ [2]

Total Question 6

7 Fig. 4 shows a design of a wooden test tube holder for use in a school science room. The holder is made from three separate parts; top, stem and base.

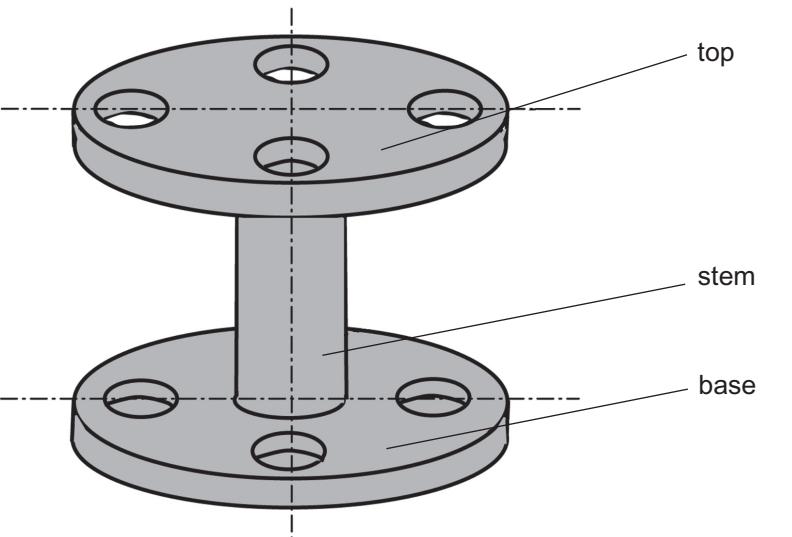


Fig. 4

(a) The designer decided to choose beechwood as the material for the holder.

Write down a reason for choosing beechwood for the holder.

[1]

(b) Write down the name of **two** suitable workshop machines that could be used to make the top of the holder.

1. _____ [1]

2. _____ [1]

(c) Show how the top, base and stem are to be fitted together. Use an annotated sketch or sketches to do this. Screws and nails should not be used.

Examiner Only	
Marks	Remark

[3]

Total Question 7

[Turn over

8 Electronic circuits make use of conductors and insulators.

(a) What are the chief functions of a conductor and an insulator in an electronic circuit?

Conductor _____
_____ [1]

Insulator _____
_____ [1]

(b) **Fig. 5** shows a resistor.

© iStockphoto / Thinkstock

Fig. 5

(i) Show the conductor and the insulator by clearly labelling the resistor in **Fig. 5**. [2]

(ii) If the resistor shown in **Fig. 5** has a value of $1.2\text{k}\Omega$ use the information below to work out the colour code for the first three bands shown on the resistor. Band 1 is on the left hand side of **Fig. 5**.

0 = Black 1 = Brown 2 = Red 3 = Orange 4 = Yellow
5 = Green 6 = Blue 7 = Violet 8 = Grey 9 = White

Band 1 _____ [1]

Band 2 _____ [1]

Band 3 _____ [1]

(c) (i) Write down the type of circuit shown in **Fig. 6**.

[1]

Examiner Only

Marks

Remark

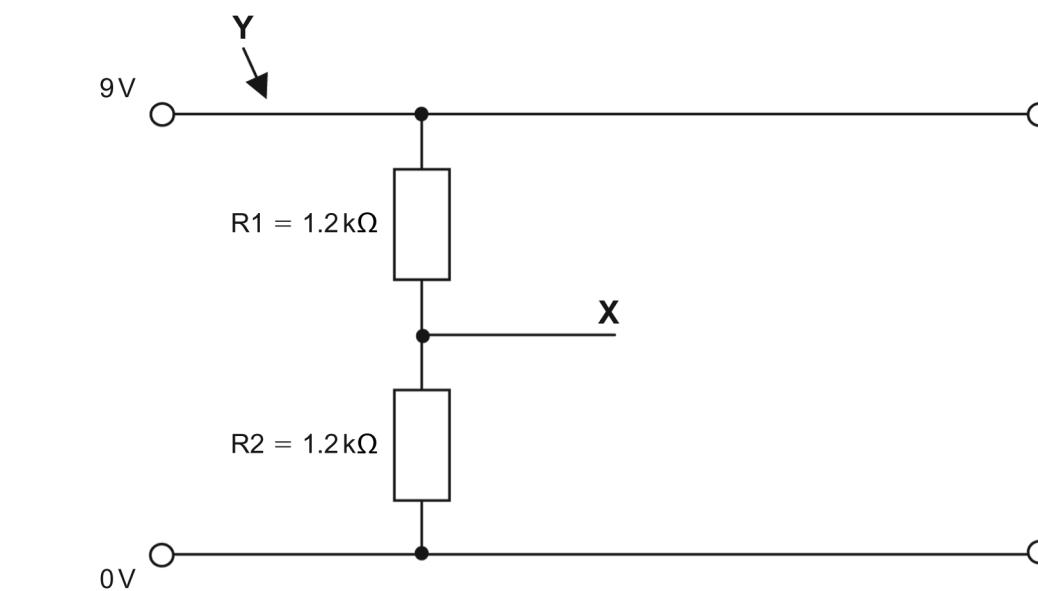


Fig. 6

(ii) What is the expected voltage output at **X** if each resistor in **Fig. 6** has a value of $1.2\text{ k}\Omega$?

[1]

(iii) A SPST switch is to be added at point **Y** in **Fig. 6**.

Use the space below to draw a sketch of the symbol for a SPST switch.

[1]

(iv) What does the abbreviation SPST stand for?

[1]

Total Question 8

[Turn over

9 Part of a flowchart for an alarm system to let people leave a building is described below. **Fig. 7** shows a computer control keypad that is activated when a code is entered into the pad.

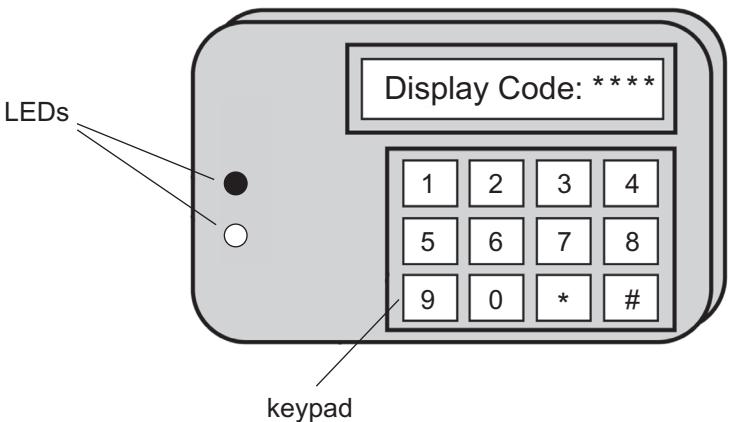
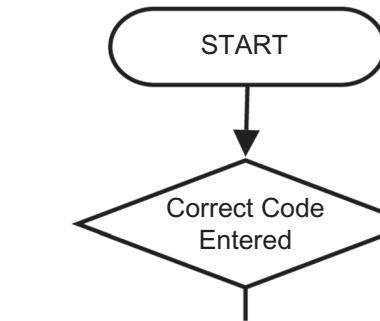


Fig. 7


When the code is entered into the keypad two LEDs are switched on and a timer is activated for 50 seconds to give the people time to leave the building.

At the end of 50 seconds the two LEDs will switch off and the alarm will be set.

If someone enters the building after the alarm is set, the alarm will activate. When a reset code is entered the alarm will switch off and the program will stop.

Complete the flowchart on the page opposite for the part of the system as described above.

Examiner Only	
Marks	Remark

Examiner Only

Marks

Remark

Total Question 9

[11]

[Turn over

8115.03 ML

10 Fig. 8 shows a stand for parking bicycles.

© D Long / CCEA

Fig. 8

(a) The stand was made by fabrication. Explain what is meant by fabrication.

[1]

(b) The designer has decided to use stainless steel and not mild steel to make the stand.

(i) Write down **two** reasons for using stainless steel and not mild steel.

1. _____

2. _____

[2]

(ii) What is **one** disadvantage of using stainless steel and not mild steel?

[1]

(c) The stand holds five bicycles. When all five bicycles are parked, two bicycles are supported at a different level than the other three.

Why do you think this feature was in the design?

[2]

Examiner Only

Marks

Remark

Total Question 10

[Turn over

11 Vacuum forming is a process used in the school workshop to make a variety of plastic products.

Describe the process used for preparing and making a “vacuum formed product”.

What safety precautions should be used in this process?

Final Question 11

[0]

8115.03 **ML**

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

8115.03 ML

DO NOT WRITE ON THIS PAGE

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

Total Marks	
--------------------	--

Examiner Number

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.