

Markscheme

November 2018

Physics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

С	uesti	on	Answers	Notes	Total
1.	а		change in momentum each second = $6.6 \times 10^{-6} \times 5.2 \times 10^{4}$ «= 3.4×10^{-1} kg m s ⁻¹ » \checkmark acceleration = « $\frac{3.4 \times 10^{-1}}{740}$ =» 4.6×10^{-4} «m s ⁻² » \checkmark		2
1.	b	i	ALTERNATIVE 1: (considering the acceleration of the spacecraft) time for acceleration = $\frac{30}{6.6 \times 10^{-6}}$ = «4.6×10 ⁶ » «s» ✓ max speed = «answer to (a) × 4.6×10 ⁶ =» 2.1×10 ³ «m s ⁻¹ » ✓ ALTERNATIVE 2: (considering the conservation of momentum) (momentum of 30 kg of fuel ions = change of momentum of spacecraft) $30 \times 5.2 \times 10^4$ = 710 × max speed ✓ max speed = 2.2×10 ³ «m s ⁻¹ » ✓		2
1.	b	ii	problem may be too complicated for exact treatment ✓ to make equations/calculations simpler ✓ when precision of the calculations is not important ✓ some quantities in the problem may not be known exactly ✓		1 max

(continued...)

(Question 1 continued)

Question		on	Answers	Notes	Total	
1.	С	i	ions have same (sign of) charge ✓		2	
			ions repel each other ✓			
1.	С	ii	the forces between the ions do not affect the force on the spacecraft. ✓		2	
			there is no effect on the acceleration of the spacecraft. 🗸			
1.	d	i	force per unit mass ✓			
			acting on a small/test/point mass «placed at the point in the field» ✓		2	
1.	d	ii	satellite has a much smaller mass/diameter/size than the planet «so approximates to a point mass» ✓		1	

C	uestion	Answers	Notes	Total
2.	a	ALTERNATIVE 1: $r = \sqrt{\frac{\rho l}{\pi R}} \mathbf{O} \qquad \sqrt{\frac{7.2 \times 10^{-7} \times 12.5}{\pi \times 0.1}} \checkmark$ $r = 5.352 \times 10^{-3} \checkmark$ $5.4 \times 10^{-3} \text{«m»} \checkmark$ $ALTERNATIVE 2:$ $A = \frac{7.2 \times 10^{-7} \times 12.5}{0.1} \checkmark$ $r = 5.352 \times 10^{-3} \checkmark$ $5.4 \times 10^{-3} \text{«m»} \checkmark$		3
2.	b	current in lamp = $\frac{5}{24}$ «= 0.21» «A» OR $n = 24 \times \frac{8}{5}$ so «38.4 and therefore» 38 lamps \checkmark		2

(continued...)

(Question 2 continued)

C	Question		Answers	Notes	Total
2.	C	;		Accept converse arguments for adding lamps in series:	
			when adding more lamps in parallel the brightness stays the same ✓	when adding more lamps in series the brightness decreases	
			when adding more lamps in parallel the pd across each remains the same/at the operating value/24 V ✓	when adding more lamps in series the pd decreases	
			when adding more lamps in parallel the current through each remains the same ✓	when adding more lamps in series the current decreases	
			lamps can be controlled independently ✓	lamps can't be controlled independently	1 max
			the pd across each bulb is larger in parallel ✓	the pd across each bulb is smaller in series	
			the current in each bulb is greater in parallel ✓	the current in each bulb is smaller in series	
			lamps will be brighter in parallel than in series ✓		
			In parallel the pd across the lamps will be the operating value/24 V ✓	in series the pd across the lamps will less than the operating value/24 V	
				Do not accept statements that only compare the overall resistance of the combination of bulbs.	

C	Question	Answers	Notes	Total
3.	а	ALTERNATIVE 1:		
		initial momentum = $mv = \sqrt{2 \times 0.058 \times 0.63}$ «= 0.27 kg m s ⁻¹ »		
		OR		
		$mv = 0.058 \times \sqrt{2 \times 9.81 \times 1.1} \text{e} = 0.27 \text{ kg m s}^{-1} \text{s} $		
		force = « change in momentum time = » $\frac{0.27}{0.055}$ ✓		
		4.9 «N» ✓		
		$F - mg = 4.9 \text{ so } F = 5.5 \text{ «N» } \checkmark$		4
		ALTERNATIVE 2:		
		$\kappa E_k = \frac{1}{2} \text{mv}^2 = 0.63 \text{ J} \text{ w} \text{ v} = 4.7 \text{ m s}^{-1} \checkmark$		
		acceleration = $\frac{\Delta V}{\Delta t}$ = $\frac{4.7}{55 \times 10^{-3}}$ = $\frac{4.7}{55 \times 10^{-3}}$ = $\frac{4.7}{55 \times 10^{-3}}$		
		4.9 «N» √		
		F-mg=4.9 so F=5.5 «N» ✓		

(continued...)

(Question 3 continued)

C	uestion	Answers	Notes	Total
3.	b	ALTERNATIVE 1:	Allow reverse argument for grass.	
		concrete reduces the stopping time/distance ✓		
		impulse/change in momentum same so force greater		
		OR		
		work done same so force greater ✓		2
		ALTERNATIVE 2:		
		concrete reduces the stopping time ✓		
		deceleration is greater so force is greater ✓		

C	Questi	on	Answers	Notes	Total
4.	а		«air molecule» moves to the right and then back to the left ✓ returns to X/original position ✓		2
4.	b		wavelength = $2 \times 1.4 = 2.8 \text{ m} \checkmark$ $c = f \lambda = 120 \times 2.8 = 340 \checkmark$ $K = \rho c^2 = 1.3 \times 340^2 = 1.5 \times 10^5 \checkmark$		3
4.	С	i	construction showing formation of image ✓	Another straight line/ray from image through the wall with line/ray from intersection at wall back to transmitter. Reflected ray must intersect boat.	1
4.	С	ii	interference pattern is observed OR interference/superposition mentioned ✓ maximum when two waves occur in phase/path difference is nλ OR minimum when two waves occur 180° out of phase/path difference is (n + ½) λ ✓		2

C	uestion	Answers	Notes	Total
5.	а	identifies $\lambda = 435 \text{nm} \checkmark$ $E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{4.35 \times 10^{-7}} \checkmark$ $4.6 \times 10^{-19} \text{wJ} \text{J} \text{J}$		
5.	b	-0.605 OR -0.870 OR -1.36 to -5.44 AND arrow pointing downwards ✓	Arrow MUST match calculation in (a)(i) Allow ECF from (a)(i)	1
5.	С	Difference in energy levels is equal to the energy of the photon Downward arrow as energy is lost by hydrogen/energy is given out in the photon/the electron falls from a higher energy level to a lower one	Allow ECF from (a)(i)	2

C	Question		Answers	Notes	Total
6.	а		use of $I \propto \frac{1}{r^2}$ «1.36×10 ³ × $\frac{1}{1.5^2}$ » \checkmark 604 «W m ⁻² » \checkmark		2
6.	b		use of $\frac{600}{4}$ for mean intensity \checkmark temperature/K = $ \checkmark \sqrt[4]{\frac{600}{4 \times 5.67 \times 10^{-8}}} = $ » 230 \checkmark		2
6.	С		recognize the link between molecular density/concentration and pressure ✓ low pressure means too few molecules to produce a significant heating effect OR low pressure means too little radiation re-radiated back to Mars ✓		2

C	Questi	on	Answers	Notes	Total
7.	а		Internal energy is the sum of all the PEs and KEs of the molecules (of the oxygen) ✓ PE of molecules in gaseous state is zero ✓ (At boiling point) average KE of molecules in gas and liquid is the same ✓ gases have a higher internal energy ✓	Molecules/particles/atoms must be included once, if not, award [1 max]	2 max
7.	b	i	ALTERNATIVE 1: flow rate of oxygen = $8 ext{ g s}^{-1} ext{ } ext$		2
7.	b	ii	$V = \frac{nRT}{p} = 3.9 \times 10^{-3} \text{ cm}^3 \text{ s} \checkmark$		1
7.	С		ideal gas has point objects ✓ no intermolecular forces ✓ non liquefaction ✓ ideal gas assumes monatomic particles ✓ the collisions between particles are elastic ✓	Allow the opposite statements if they are clearly made about oxygen eg oxygen/this can be liquified	1 max