

# **Markscheme**

**November 2018** 

**Physics** 

Standard level

Paper 3



This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

## **Section A**

| C  | uesti | on | Answers                                                                                         | Notes                                                                                | Total |
|----|-------|----|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------|
| 1. | а     |    | $m^{\frac{3}{2}}$ $\checkmark$                                                                  | Accept other power of tens multiples of $m^{\frac{3}{2}}$ , eg: $cm^{\frac{3}{2}}$ . | 1     |
| 1. | b     |    | measured uncertainties «for one oscillation and for 20 oscillations» are the same/similar/OWTTE |                                                                                      |       |
|    |       |    | OR                                                                                              |                                                                                      | 2     |
|    |       |    | % uncertainty is less for 20 oscillations than for one ✔                                        |                                                                                      |       |
|    |       |    | dividing «by 20» / finding mean reduces the random error ✓                                      |                                                                                      |       |

## (Question 1 continued)

| C  | Question |    | Answers                                                                                                                                                                                                                                                                 | Notes                                                             | Total |
|----|----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|
| 1. | C        | i  | Straight line touching at least 3 points drawn across the range $\checkmark$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                        | It is not required to extend the line to pass through the origin. | 1     |
| 1. | С        | ii | theory predicts proportional relation $\mbox{$^{\circ}$} T \propto \frac{1}{d}$ , slope = $Td = \frac{c}{\sqrt{g}}$ = constant $\mbox{$^{\circ}$} \checkmark$ the graph is $\mbox{$^{\circ}$}$ straight $\mbox{$^{\circ}$}$ line through the origin $\mbox{$^{\circ}$}$ |                                                                   | 2     |

## (Question 1 continued)

| C  | uestic | on | Answers                                                                                                                                                                                                     | Notes                     | Total |
|----|--------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|
| 1. | d      |    | correctly determines gradient using points where ΔT≥1.5s  OR  correctly selects a single data point with T≥1.5s ✓  manipulation with formula, any new and correct expression to enable g to be determined ✓ | Allow range 0.51 to 0.57. | 4     |
|    |        |    | Calculation of g ✓  With g in range 8.6 and 10.7 «m s <sup>-2</sup> » ✓                                                                                                                                     |                           |       |

| C  | uestic | on Answers                                                          | Notes | Total |
|----|--------|---------------------------------------------------------------------|-------|-------|
| 2. | а      | to provide a constant heating rate / power                          |       |       |
|    |        | OR                                                                  |       | 1     |
|    |        | to have <i>m</i> proportional to <i>t</i> ✓                         |       |       |
| 2. | b      | due to heat losses «VIt is larger than heat into liquid» ✓          |       | 2     |
|    |        | L <sub>v</sub> calculated will be larger <b>√</b>                   |       | 2     |
| 2. | С      | heat losses will be similar / the same for both experiments         |       |       |
|    |        | OR                                                                  |       |       |
|    |        | heat loss presents systematic error ✓                               |       |       |
|    |        | taking the difference cancels/eliminates the effect of these losses |       | 2     |
|    |        | OR                                                                  |       |       |
|    |        | use a graph to eliminate the effect <b>✓</b>                        |       |       |

## **Section B**

# Option A — Relativity

| C  | uesti | on | Answers                                                                                                                                                                                                                                                               | Notes                                   | Total |
|----|-------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|
| 3. | а     |    | a set of rulers and clocks / set of coordinates to record the position and time of events ✓                                                                                                                                                                           |                                         | 1     |
| 3. | b     | i  | the time in frame S' is $t' = \frac{L}{c} \checkmark$<br>but time is absolute in Galilean relativity so is the same in S $\checkmark$<br>ALTERNATIVE 2:<br>In frame S, light rays travel at $c + v \checkmark$<br>so $t = \frac{L}{(c+v)-v} = \frac{L}{c} \checkmark$ | In Alternative 1, they must refer to S' | 2     |
| 3. | b     | ii | $x = x' + vt$ and $x' = L$ <b><math>\checkmark</math></b> «substitution to get answer»                                                                                                                                                                                |                                         | 1     |

| C  | Question |    | Answers                                                                                                                                                                                                                                                                                                                            | Notes | Total |
|----|----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 4. | а        |    | $\frac{0.82c + 0.40c}{1 + \frac{0.82c \times 0.40c}{c^2}} \checkmark$ 0.92c $\checkmark$                                                                                                                                                                                                                                           |       | 2     |
| 4. | b        | i  | $\Delta t' = \frac{120}{0.40c} \checkmark$ $\Delta t' = 1.0 \times 10^{-6} \text{ (s)} \checkmark$                                                                                                                                                                                                                                 |       | 2     |
| 4. | b        | ii | $\gamma = \frac{1}{\sqrt{1 - 0.82^2}} = x \cdot 1.747 \checkmark$ $\Delta t = \frac{v}{\sqrt{\Delta t'} + \frac{v \Delta x'}{c^2}} = 1.747 \times \left(1.0 \times 10^{-6} + \frac{0.82c \times 120}{c^2}\right)$ OR $\Delta t = \frac{120}{1.747 \times (0.92 - 0.82)c} \checkmark$ $2.3 \times 10^{-6} \text{ s.s. } \checkmark$ |       | 3     |

| Q  | uestic | on | Answers                                                                                                                                                                                                                                                                           | Notes | Total |
|----|--------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 5. | a      | -  | $\gamma = \frac{1}{\sqrt{1 - 0.745^2}} = 1.499 \checkmark$ $x' = \frac{1}{\sqrt{1 - 0.745^2}} = 1.499 \times (1.0 - 0) \checkmark$ $x' = 1.5 \text{ m}$                                                                                                                           |       | 2     |
| 5. | а      | ii | $t' = \ll \gamma \left( t - \frac{vx}{c^2} \right) = \gg 1.499 \times \left( 0 - \frac{0.745c \times 1}{c^2} \right) \ll -\frac{1.11}{c} \gg$ $\ll ct' = -1.1 \text{ m} \gg$ $OR$ using spacetime interval $0 - 1^2 = (ct')^2 - 1.5^2 \Rightarrow \ll ct' = -1.11 \gg \checkmark$ |       | 1     |

## (Question 5 continued)

| C  | Question |   | Answers                                                                    | Notes               | Total |
|----|----------|---|----------------------------------------------------------------------------|---------------------|-------|
| 5. | b        | i | line through event E parallel to ct' axis meeting x' axis and labelled P ✓ | ct S' frame S frame | 1     |

## (Question 5 continued)

| (  | Questic | on | Answers                                                                        | Notes               | Total |
|----|---------|----|--------------------------------------------------------------------------------|---------------------|-------|
| 5. | b       | ii | point on $x'$ axis about $\frac{2}{3}$ of the way to P labelled Q $\checkmark$ | ct S' frame S frame | 1     |

## (Question 5 continued)

| C  | uesti | on | Answers                                                                                                                                                                                              | Notes                      | Total |
|----|-------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|
| 5. | c     | i  | ends of rod must be recorded at the same time in frame S' ✓ any vertical line from E crossing x', no label required ✓ right-hand end of rod intersects at R «whose co-ordinate is less than 1.0 m» ✓ | S' frame  S frame  S frame | 3     |
| 5. | С     | ii | 0.7 m <b>√</b>                                                                                                                                                                                       |                            | 1     |

# Option B — Engineering physics

| Q  | uestic | on | Answers                                                                                                                                                                                                                                 | Notes | Total |
|----|--------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 6. | а      |    | taking torques about the pivot $R \times 4.00 = 36.0 \times 2.5$ $\checkmark$ $R = 22.5$ «N» $\checkmark$                                                                                                                               |       | 2     |
| 6. | b      | i  | $36.0 \times 2.50 = 30.6 \times \alpha$ $\checkmark$ $\alpha = 2.94 \text{ « rad s}^{-2} \text{ » } \checkmark$                                                                                                                         |       | 2     |
| 6. | b      | ii | the equation can be applied only when the angular acceleration is constant ✓ any reasonable argument that explains torque is not constant, giving non constant acceleration ✓                                                           |       | 2     |
| 6. | С      | i  | «from conservation of energy» Change in GPE = Change in rotational KE $\checkmark$ $W\frac{L}{2} = \frac{1}{2}I\omega^2 \checkmark$ $\omega = \sqrt{\frac{36.0 \times 5.00}{30.6}} \checkmark$ « $\omega = 2.4254 \text{ rad s}^{-1}$ » |       | 3     |
| 6. | С      | ii | $L = 30.6 \times 2.43 = 74.4 \text{ «Js.»}$                                                                                                                                                                                             |       | 1     |

| C  | Question |    | Answers                                                                                                                                                                                                                                                                                                                                                                                                                      | Notes | Total |
|----|----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 7. | а        | i  | ALTERNATIVE 1:<br>$P_{c} = P_{B} = \frac{P_{A}V_{A}}{V_{B}} \checkmark$ $= \frac{2.8 \times 10^{6} \times 1 \times 10^{-4}}{2.8 \times 10^{-4}} = 1.00 \times 10^{6} Pa    \checkmark$ ALTERNATIVE 2<br>$2.80 \times 10^{6} \times 1.00^{\frac{5}{3}} = P_{c} \times 1.85^{\frac{5}{3}} \checkmark$ $P_{c} = 2.80 \times 10^{6} \times \frac{1.00^{\frac{5}{3}}}{1.85^{\frac{5}{3}}} = 1.00 \times 10^{6} Pa     \checkmark$ |       | 2     |
| 7. | а        | ii | ALTERNATIVE 1:<br>Since $T_B = T_A$ then $T_C = \frac{V_C T_B}{V_B}$ $\checkmark$ $= \frac{1.85 \times 385}{2.8} \ll 254.4 \text{K} \gg \checkmark$ ALTERNATIVE 2:<br>$\frac{2.80 \times 1.00}{385} = \frac{1.00 \times 1.85}{T_C} \ll \text{K} \gg \checkmark$ $T_C = 385 \times \frac{1.00 \times 1.85}{2.80} \ll 254.4 \text{K} \gg \checkmark$                                                                           |       | 2     |

#### (Question 7 continued)

| Question |                                                                                                                          | on | Answers                                                                                                                                      | Notes                  | Total |
|----------|--------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|
| 7.       | b                                                                                                                        |    | work done = $\langle p \Delta V = 1.00 \times 10^6 \times (1.85 \times 10^{-4} - 2.80 \times 10^{-4}) = \mathbf{w} - 95  \langle J \rangle $ | Allow positive values. |       |
|          | change in internal energy = $\frac{3}{2}p\Delta V = -\frac{3}{2} \times 95 = \mathbf{y} - 142.5 \text{ «J» } \checkmark$ |    | change in internal energy = $\frac{3}{2}p\Delta V = -\frac{3}{2} \times 95 = \mathbf{y} - 142.5  \text{«J}  \mathbf{y}$                      |                        | 3     |
|          |                                                                                                                          |    | Q = -95 - 142.5 <b>✓</b>                                                                                                                     |                        |       |
|          |                                                                                                                          |    | «-238 J»                                                                                                                                     |                        |       |
| 7.       | С                                                                                                                        | i  | net work is 288 – 238 = 50 <b>«J» ✓</b>                                                                                                      |                        |       |
|          |                                                                                                                          |    | efficiency = $\frac{288 - 238}{288} = 0.17$ $\checkmark$                                                                                     |                        | 2     |
| 7.       | С                                                                                                                        | ii | along B→C ✓                                                                                                                                  |                        | 1     |

## Option C — Imaging

| (  | Questi | ion | Answers                                                                                                                                                                                                           | Notes                                               | Total |
|----|--------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------|
| 8. | а      |     | each incident ray shown splitting into two ✓ each pair symmetrically intersecting each other on principal axis ✓ for red, intersection further to the right ✓                                                     | For MP3, at least one of the rays must be labelled. | 3     |
| 8. | b      | i   | rays diverge after passing through lens  OR  the extension of the rays will intersect the principal axis on the side of incident rays/as if they were coming from the focal point/points in the left side/OWTTE ✓ |                                                     | 1     |
| 8. | b      | ii  | by placing a diverging lens next to the converging lens  OR  make an achromatic doublet   ✓                                                                                                                       |                                                     | 1     |

| Q  | uestic | n | Answers                                                                                                                                                                                                                                                                                                                                             | Notes                          | Total |
|----|--------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|
| 9. | а      |   | proper construction lines ✓ image at intersection of proper construction lines ✓                                                                                                                                                                                                                                                                    | objective lens  objective lens | 2     |
| 9. | b      | i | distance of intermediate image from objective is $\frac{1}{v} = \frac{1}{20} - \frac{1}{24}  ie: \ v = 120 \text{ wmm} \text{ w}  \checkmark$ distance of intermediate image from eyepiece is $\frac{1}{u} = \frac{1}{60} - \left(-\frac{1}{240}\right)  ie: \ u = 48 \text{ wmm} \text{ w}  \checkmark$ lens separation 168 wmm w \( \checkmark \) |                                | 3     |

#### (Question 9 continued)

| Q | uesti | on | Answers                                                                              | Notes                                            | Total |
|---|-------|----|--------------------------------------------------------------------------------------|--------------------------------------------------|-------|
| 9 | b     | ii | ALTERNATIVE 1:                                                                       | Accept positive or negative values throughout.   |       |
|   |       |    | eyepiece: $m = \frac{-v}{u} = \frac{240}{48} = 5$                                    | Accept positive of flegative values tilloughout. |       |
|   |       |    | AND                                                                                  |                                                  |       |
|   |       |    | objective $m = \frac{-v}{u} = \frac{-120}{24} = -5$                                  |                                                  |       |
|   |       |    | Total $m = -5 \times 5 = -25$ <b><math>\checkmark</math></b>                         |                                                  | 2     |
|   |       |    | ALTERNATIVE 2:                                                                       |                                                  |       |
|   |       |    | $m = \left(\frac{240}{60} + 1\right) \times \left(-\frac{120}{24}\right) \checkmark$ |                                                  |       |
|   |       |    | <i>m</i> = −25 <b>√</b>                                                              |                                                  |       |

| Q   | uestic | on  | Answers                                                                                                                                                                                  | Notes | Total |
|-----|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 10. | а      | i   | « $\sin \theta_{c} = \frac{n_{1}}{n_{2}}$ » $n_{1} = 1.52 \times \sin 84.0^{\circ}$ ✓ $n_{1} = 1.51$ ✓                                                                                   |       | 2     |
| 10. | а      | ii  | to have a critical angle close to 90° ✓ so only rays parallel to the axis are transmitted ✓ to reduce waveguide/modal dispersion ✓                                                       |       | 1 max |
| 10. | b      | i   | long path is $\frac{12 \times 10^3}{\sin 84^\circ}$ $\checkmark$ = 12066 «m» $\checkmark$ «so 66 m longer»                                                                               |       | 2     |
| 10. | b      | ii  | speed of light in core is $\frac{3.0 \times 10^8}{1.52} = 1.97 \times 10^8 \text{ wm s}^{-1} \text{ w}$<br>time delay is $\frac{66}{1.97 \times 10^8} = 3.35 \times 10^{-7} \text{ ws }$ |       | 2     |
| 10. | b      | iii | no, period of signal is 1×10 <sup>-8</sup> <b>«s»</b> which is smaller than the time delay/OWTTE <b>√</b>                                                                                |       | 1     |

## Option D — Astrophysics

| Question |                                                                             | on | Answers                                                                     | Notes | Total |
|----------|-----------------------------------------------------------------------------|----|-----------------------------------------------------------------------------|-------|-------|
| 11.      | а                                                                           |    | In cluster, stars are gravitationally bound <i>OR</i> constellation not ✓   |       |       |
|          | In cluster, stars are the same/similar age <i>OR</i> in constellation not ✓ |    | In cluster, stars are the same/similar age <i>OR</i> in constellation not ✓ |       |       |
|          |                                                                             |    | Stars in cluster are close in space/the same distance                       |       |       |
|          |                                                                             |    | OR                                                                          |       | 2 max |
|          |                                                                             |    | in constellation not ✓                                                      |       |       |
|          |                                                                             |    | Cluster stars appear closer in night sky than constellation ✓               |       |       |
|          |                                                                             |    | Clusters originate from same gas cloud <i>OR</i> constellation does not ✓   |       |       |
| 11.      | b                                                                           | i  | d=275 «pc» ✓                                                                |       | 1     |
| 11.      | b                                                                           | ii | because of the difficulty of measuring very small angles ✓                  |       | 1     |

| Q   | uesti | on  | Answers                                                                                                                                                       | Notes | Total |
|-----|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 12. | а     | i   | $\lambda = \frac{2.9 \times 10^{-3}}{4600} = 80.00 \text{ m/s}$                                                                                               |       | 1     |
| 12. | а     | ii  | black body curve shape ✓ peaked at a value from range 600 to 660 nm ✓                                                                                         |       | 2     |
| 12. | а     | iii | $\frac{L}{L_{\odot}} = \left(\frac{0.73R_{\odot}}{R_{\odot}}\right)^{2} \times \left(\frac{4600}{5800}\right)^{4} \checkmark$ $L = 0.211L_{\odot} \checkmark$ |       | 2     |
| 12. | b     |     | $M = $ $ 0.21^{\frac{1}{3.5}} M_{\odot} = $ $ 0.640 M_{\odot} $ $ \checkmark $                                                                                |       | 1     |
| 12. | С     |     | Obtain «line» spectrum of star ✓ Compare to «laboratory» spectra of elements ✓                                                                                |       | 2     |
| 12. | d     |     | red giant <b>✓</b> planetary nebula <b>✓</b> white dwarf <b>✓</b>                                                                                             |       | 3     |

| Q   | uestic | n Answers                                                                                                                                                                                                                         | Notes | Total |  |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--|
| 13. | а      | measured redshift «z» of star $\checkmark$ use of Doppler formula $OR$ z~v/c $OR$ $v = \frac{c\Delta\lambda}{\lambda}$ to find $v \checkmark$                                                                                     |       | 2     |  |
| 13. | b      | use of gradient or any point on the line to obtain any expression for either $H = \frac{v}{d}$ or $t = \frac{d}{v}$ $\checkmark$ correct conversion of $d$ to m and v to m/s $\checkmark$ = $4.6 \times 10^{17}$ «s» $\checkmark$ |       | 3     |  |